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Chapter 1

The name of the game

What is game theory about?

When my wife was away for the day at a pleasant little conference
in Tuscany, three young women invited me to share their table for
lunch. As I sat down, one of them said in a sultry voice, ‘Teach us
how to play the game of love’, but it turned out that all they wanted
was advice on how to manage Italian boyfriends. I still think they
were wrong to reject my strategic recommendations, but they were
right on the nail in taking for granted that courting is one of the
many different kinds of game we play in real life.

Drivers manoeuvring in heavy traffic are playing a driving game.
Bargain-hunters bidding on eBay are playing an auctioning game.
A firm and a union negotiating next year’s wage are playing a
bargaining game. When opposing candidates choose their
platform in an election, they are playing a political game. The
owner of a grocery store deciding today’s price for corn flakes is
playing an economic game. In brief, a game is being played
whenever human beings interact.

Antony and Cleopatra played the courting game on a grand scale.
Bill Gates made himself immensely rich by playing the computer
software game. Adolf Hitler and Josef Stalin played a game that
killed off a substantial fraction of the world’s population. Kruschev
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and Kennedy played a game during the Cuban missile crisis that
might have wiped us out altogether.

With such a wide field of application, game theory would be a
universal panacea if it could always predict how people will play
the many games of which social life largely consists. But game
theory isn’t able to solve all of the world’s problems, because it
only works when people play games rationally. So it can’t predict
the behaviour of love-sick teenagers like Romeo or Juliet, or
madmen like Hitler or Stalin. However, people don’t always
behave irrationally, and so it isn’t a waste of time to study what
happens when people put on their thinking caps. Most of us at
least try to spend our money sensibly – and we don’t do too badly
much of the time or economic theory wouldn’t work at all.

Even when people haven’t thought everything out in advance, it
doesn’t follow that they are necessarily behaving irrationally.
Game theory has had some notable successes in explaining the
behaviour of spiders and fish, neither of which can be said to think
at all. Such mindless animals end up behaving as though they were
rational, because rivals whose genes programmed them to behave
irrationally are now extinct. Similarly, companies aren’t always
run by great intellects, but the market is often just as ruthless as
Nature in eliminating the unfit from the scene.

Does game theory work?

In spite of its theoretical successes, practical men of business used
to dismiss game theory as just one more ineffectual branch of
social science, but they changed their minds more or less overnight
after the American government decided to auction off the right to
use various radio frequencies for use with cellular telephones.

With no established experts to get in the way, the advice of game
theorists proved decisive in determining the design of the rules of
the auctioning games that were used. The result was that the
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American taxpayer made a profit of $20 billion – more than twice
the orthodox prediction. Even more was made in a later British
telecom auction for which I was responsible. We made a total of
$35 billion in just one auction. In consequence, Newsweek
magazine described me as the ruthless, Poker-playing economist
who destroyed the telecom industry!

As it turned out, the telecom industry wasn’t destroyed. Nor is it at
all ruthless to make the fat cats of the telecom industry pay for
their licences what they think they are worth – especially when the
money is spent on hospitals for those who can’t afford private
medical care. As for Poker, it is at least 20 years since I played for
more than nickels and dimes. The only thing that Newsweek got
right is that game theory really does work when applied by people
who know what they are doing. It works not just in economics, but
also in evolutionary biology and political science. In my recent
book Natural Justice, I even outrage orthodox moral philosophers
by using game theory when talking about ethics.

Toy games

Each new big-money telecom auction needs to be tailored to the
circumstances in which it is going to be run. One can’t just take a
design off the shelf, as the American government found when it
hired Sotheby’s to auction off a bunch of satellite transponders.
But nor can one capture all the complicated ins and outs of a new
telecom market in a mathematical model. Designing a telecom
auction is therefore as much an art as a science. One extrapolates
from simple models chosen to mimic what seem to be the essential
strategic features of a problem.

I try to do the same in this book, which therefore contains no
algebra and a minimum of technical jargon. It looks only at toy
games, leaving aside all the bells and whistles with which they are
complicated in real life. However, most people find that even toy
games give them plenty to think about.
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1. Alice and Bob’s decision problem inMatching Pennies

Conflict and cooperation

Most of the games in this book have only two players, called Alice
and Bob. The first game they will play is Matching Pennies.

Sherlock Holmes and the evil Professor Moriarty played Matching
Pennies on the way to their final confrontation at the Reichenbach
Falls. Holmes had to decide at which station to get off a train.
Moriarty had to decide at which station to lie in wait. A real-life
counterpart is played by dishonest accountants and their auditors.
The former decide when to cheat and the latter decide when to
inspect the books.

In our toy version, Alice and Bob each show a coin. Alice wins if
both coins show the same face. Bob wins if they show different
faces. Alice and Bob therefore each have two strategies, heads and
tails. Figure 1 shows who wins and loses for all possible strategy
combinations. These outcomes are the players’ payoffs in the
game. The thumbs-up and thumbs-down icons have been used to
emphasize that payoffs needn’t be measured in money.

Figure 2 shows how all the information in Figure 1 can be
assembled into a payoff table, with Alice’s payoff in the southwest
corner of each cell, and Bob’s in the northeast corner. It also shows
a two-player version of the very different Driving Game that we
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2. Payoff tables. Alice chooses a row and Bob chooses a column

play every morning when we get into our cars to drive to work.
Alice and Bob again have two pure strategies, left and right, but
now the players’ payoffs are totally aligned instead of being
diametrically opposed. When journalists talk about a win-win
situation, they have something like the Driving Game in mind.

Von Neumann

The first result in game theory was John Von Neumann’s minimax
theorem, which applies only to games like Matching Pennies in
which the players are modelled as implacable enemies. One
sometimes still reads dismissive commentaries on game theory in
which Von Neumann is caricatured as the archetypal cold
warrior – the original for Dr Strangelove in the well known movie.
We are then told that only a crazed military strategist would think
of applying game theory in real life, because only a madman or a
cyborg would make the mistake of supposing that the world is a
game of pure conflict.

Von Neumann was an all-round genius. Inventing game theory
was just a sideline for him. It is true that he was a hawk in the
Cold War, but far from being a mad cyborg, he was a genial soul,
who liked to party and have a good time. Just like you and me, he
preferred cooperation to conflict, but he also understood that the
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way to achieve cooperation isn’t to pretend that people can’t
sometimes profit by causing trouble.

Cooperation and conflict are two sides of the same coin, neither of
which can be understood properly without taking account of the
other. To consider a game of pure conflict like Matching Pennies
isn’t to claim that all human interaction is competitive. Nor is one
claiming that all human interaction is cooperative when one looks
at a game of pure coordination like the Driving Game. One is
simply distinguishing two different aspects of human behaviour so
that they can be studied one at a time.

Revealed preference

To cope with cooperation and conflict together, we need a better
way of describing the motivation of the players than simply saying
that they like winning and dislike losing. For this purpose,
economists have invented the idea of utility, which allows each
player to assign a numerical value to each possible outcome of a
game.

In business, the bottom line is commonly profit, but economists
know that human beings often have more complex aims than
simply making as much money as they can. So we can’t identify
utility with money. A naive response is to substitute happiness for
money. But what is happiness? How do we measure it?

It is unfortunate that the word ‘utility’ is linked historically with
Victorian utilitarians like Jeremy Bentham and John Stuart Mill,
because modern economists don’t follow them in identifying
utility with how much pleasure or how little pain a person may
feel. The modern theory abandons any attempt to explain how
people behave in terms of what is going on inside their heads. On
the contrary, it makes a virtue of making no psychological
assumptions at all.
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We don’t try to explain why Alice or Bob behave as they do.
Instead of an explanatory theory, we have to be content with a
descriptive theory, which can do no more than say that Alice or
Bob will be acting inconsistently if they did such-and-such in the
past, but now plan to do so-and-so in the future. In game theory,
the object is to observe the decisions that Alice and Bob make (or
would make) when they aren’t interacting with each other or
anyone else, and to deduce how they will behave when interacting
in a game.

We therefore don’t argue that some preferences are more rational
than others. We follow the great philosopher David Hume in
regarding reason as the ‘slave of the passions’. As he extravagantly
remarked, there would be nothing irrational about his preferring
the destruction of the entire universe to scratching his finger.
However, we go even further down this road by regarding reason
purely as an instrument for avoiding inconsistent behaviour. Any
consistent behaviour therefore counts as rational.

With some mild assumptions, acting consistently can be shown to
be the same as behaving as though seeking to maximize the value
of something. Whatever this abstract something may be in a
particular context, economists call it utility. It needn’t correlate
with money, but it sadly often does.

Taking risks

In acting consistently, Alice may not be aware that she is behaving
as though maximizing something we choose to call her utility. But
if we want to predict her behaviour, we need to be able to measure
her utility on a utility scale, much as temperature is measured on a
thermometer. Just as the units on a thermometer are called
degrees, we can then say that a util is a unit on Alice’s utility scale.

The orthodoxy in economics used to be that such cardinal utility
scales are intrinsically nonsensical, but Von Neumann fortunately
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didn’t know this when Oskar Morgenstern turned up at his house
one day complaining that they didn’t have a proper basis for the
numerical payoffs in the book on game theory they were writing
together. So Von Neumann invented a theory on the spot that
measures how much Alice wants something by the size of the risk
she is willing to take to get it. We can then figure out what choice
she will make in risky situations by finding the option that will
give her the highest utility on average.

It is easy to use Von Neumann’s theory to find how much utility to
assign to anything Alice may need to evaluate. For example, how
many utils should Alice assign to getting a date with Bob?

We first need to decide what utility scale to use. For this purpose,
pick two outcomes that are respectively better and worse than any
other outcome Alice is likely to encounter. These outcomes will
correspond to the boiling and freezing points of water used to
calibrate a Celsius thermometer, in that the utility scale to be
constructed will assign 0 utils to the worst outcome, and 100 utils
to the best outcome. Next consider a bunch of (free) lottery tickets
in which the only prizes are either the best outcome or the worst
outcome.

When we offer Alice lottery tickets with higher and higher
probabilities of getting the best outcome as an alternative to a date
with Bob, she will eventually switch from saying no to saying yes.
If the probability of the best outcome on the lottery ticket that
makes her switch is 75%, then Von Neumann’s theory says that a
date with Bob is worth 75 utils to her. Each extra percentage point
added to her indifference probability therefore corresponds to one
extra util.

When some people evaluate sums of money using this method,
they always assign the same number of utils to each extra dollar.We
call such people risk neutral. Those who assign fewer utils to each
extra dollar than the one that went before are called risk averse.
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Insurance

Alice is thinking of accepting an offer from Bob to insure her
Beverley Hills mansion against fire. If she refuses his offer, she
faces a lottery in which she ends up with her house plus the
insurance premium if her house doesn’t burn down, and with only
the premium if it does. This has to be compared with her ending
up for sure with the value of the house less the premium if she
accepts Bob’s offer.

If it is rational for Bob to make the offer and for Alice to accept, he
must think that the lottery is better than breaking even for sure,
and she must have the opposing preference. The existence of the
insurance industry therefore confirms not only that it can be
rational to gamble – provided that the risks you take are calculated
risks – but that rational people can have different attitudes to
taking risks. In the insurance industry, the insurers are close to
being risk neutral and the insurees are risk averse to varying
degrees.

Notice that economists regard the degree of risk aversion that a
person reveals as a matter of personal preference. Just as Alice
may or may not prefer chocolate ice-cream to vanilla, so she may
or may not prefer to spend $1,000 on insuring her house. Some
philosophers – notably John Rawls – insist that it is rational to be
risk averse when defending whatever alternative to maximizing
average utility they prefer, but such appeals miss the point that the
players’ attitudes to taking risks have already been taken into
account when using Von Neumann’s method to assign utilities to
each outcome.

Economists make a different mistake when they attribute risk
aversion to a dislike of the act of gambling. Von Neumann’s theory
only makes sense when the players are entirely neutral to the
actual act of gambling. Like a Presbyterian minister insuring his
house, they don’t gamble because they enjoy gambling – they
gamble only when they judge that the odds are in their favour.
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3. Numerical payoffs

Life isn’t a zero-sum game

As with measuring temperature, we are free to choose the zero and
the unit on Alice’s utility scale however we like. We could, for
example, have assigned 32 utils to the worst outcome, and 212
utils to the best outcome. The number of utils a date with Bob is
worth on this new scale is found in the same way that one converts
degrees Celsius into degrees Fahrenheit. So the date with Bob that
was worth 75 utils on the old scale would be worth 167 utils on the
new scale.

In the toy games we have considered so far, Alice and Bob have
only the outcomes WIN and LOSE to evaluate. We are free to assign
these two outcomes any number of utils we like, as long as we
assign more utils to winning than to losing. If we assign plus one
util to winning and minus one util to losing, we get the payoff
tables of Figure 3.

The payoffs in each cell of Matching Pennies in Figure 3 always
add up to zero. We can always fix things to make this true in a
game of pure conflict. Such games are therefore said to be zero
sum.When gurus tell us that life isn’t a zero-sum game, they
therefore aren’t saying anything about the total sum of happiness
in the world. They are just reminding us that the games we play in
real life are seldom games of pure conflict.
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4. Games with mixed motivations

Nash equilibrium

The old movie Rebel without a Cause still occasionally gets a
showing because it stars the unforgettable James Dean as a sexy
teenage rebel. The game of Chicken was invented to
commemorate a scene in which he and another boy drive cars
towards a cliff edge to see who will chicken out first. Bertrand
Russell famously used the episode as a metaphor for the Cold War.

I prefer to illustrate Chicken with a more humdrum story in which
Alice and Bob are two middle-aged drivers approaching each
other in a street too narrow for them to pass safely without
someone slowing down. The strategies in Figure 4 are therefore
taken to be slow and speed.

The new setting downplays the competitive element of the original
story. Chicken differs from zero-sum games like Matching Pennies
because the players also have a joint interest in avoiding a mutual
disaster.

The stereotypes embedded in the Battle of the Sexes pre-date the
female liberation movement. Alice and Bob are a newly married
couple honeymooning in New York. At breakfast, they discuss
whether to go to a boxing match or the ballet in the evening, but
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5. James Dean

fail to make a decision. They later get separated in the crowds and
now each has to decide independently where to go in the evening.

The story that accompanies the Battle of the Sexes emphasizes the
cooperative features of their problem, but there is also a
conflictual element absent from the Driving Game, because each
player prefers that they coordinate on a different outcome. Alice
prefers the ballet and Bob the boxing match.

John Nash

Everybody has heard of John Nash now that his life has been
featured in the movie A Beautiful Mind. As the movie documents,
the highs and lows of his life are out of the range of experience of
most human beings. He was still an undergraduate when he
initiated the modern theory of rational bargaining. His graduate
thesis formulated the concept of a Nash equilibrium, which is now
regarded as the basic building block of the theory of games. He
went on to solve major problems in pure mathematics, using
methods of such originality that his reputation as a mathematical
genius of the first rank became firmly established. But he fell prey
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6. John Nash

to a schizophrenic illness that wrecked his career and finally left
him to languish in obscurity for more than 40 years as an object of
occasional mockery on the Princeton campus. His recovery in time
to be awarded a Nobel Prize in 1994 seems almost miraculous in
retrospect. But as Nash comments, without his ‘madness’, he
would perhaps only have been another of the faceless multitudes
who have lived and died on this planet without leaving any trace of
their existence behind.
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However, one doesn’t need to be a wayward genius to understand
the idea of a Nash equilibrium. We have seen that the payoffs in a
game are chosen to make it tautological that rational players will
seek to maximize their average payoff. This would be easy if
players knew what strategies their opponents were going to
choose. For example, if Alice knew that Bob were going to choose
ball in the Battle of the Sexes, she would maximize her payoff by
choosing ball as well. That is to say, ball is Alice’s best reply to
Bob’s choice of ball, a fact indicated in Figure 4 by circling Alice’s
payoff in the cell that results if both players choose ball.

A Nash equilibrium is just a pair of strategies whose use results in
a cell in which both payoffs are circled. More generally, a Nash
equilibrium occurs when all the players are simultaneously
making a best reply to the strategy choices of the others.

Both (box, box) and (ball, ball) are therefore Nash equilibria in the
Battle of the Sexes. Similarly, (slow, speed) and (speed, slow) are
Nash equilibria in Chicken.

Why should we care about Nash equilibria? There are two major
reasons. The first supposes that ideally rational players reason
their way to a solution of a game. The second supposes that people
find their way to a solution by some evolutionary process of trial
and error. Much of the predictive power of game theory arises
from the possibility of passing back and forth between these
alternative interpretations. We seldom know much about the
details of evolutionary processes, but we can sometimes leap
ahead to predict where they will eventually end up by asking what
rational players would do in the situation under study.

Rational interpretation

Suppose that somebody even cleverer than Nash or Von Neumann
had written a book that lists all possible games along with an
authoritative recommendation on how each game should be
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played by rational players. Such a great book of game theory
would necessarily have to pick a Nash equilibrium as the solution
of each game. Otherwise it would be rational for at least one player
to deviate from the book’s advice, which would then fail to be
authoritative.

Suppose, for example, that the book recommended that teenage
boys playing Chicken should both choose slow as their mothers
would wish. If the book were authoritative, each player would then
know that the other was going to play slow. But a rational player in
Chicken who knows that his opponent is going to choose slow will
necessarily choose speed, thereby refuting the book’s claim to be
authoritative.

Notice that the reasoning in this defence of Nash equilibria is
circular. Why does Alice play this way? Because Bob plays that
way. Why does Bob play that way? Because Alice plays this way.

Various Latin tags are available to those who are unhappy with
such circular arguments. When first accused of committing the
fallacy of circulus in probando when talking about equilibria, I
had to go and look it up. It turns out that I was lucky not to have
been accused of the even more discreditable petitio principii. But
all arguments must obviously either be circular or reduce to an
infinite regression if one never stops asking why. Dictionary
definitions are the most familiar example.

In games, we can either forever contemplate the infinite
regression that begins:

Alice thinks that Bob thinks that Alice thinks that Bob thinks . . .

or else take refuge in the circularity built into the idea of a Nash
equilibrium. This short circuits the infinite regression by
observing that any other strategy profile will eventually be
destabilized when the players start thinking about what the other
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players are thinking. Or to say the same thing another way, if the
players’ beliefs about each other’s plans are to be consistent, then
they must be in equilibrium.

Evolutionary interpretation

The rational interpretation of Nash equilibrium had such a grip on
early game theorists that the evolutionary interpretation was
almost entirely neglected. The editors of the journal in which
Nash published his paper on equilibria even threw out his remarks
on this subject as being without interest! But game theory would
never be able to predict the behaviour of ordinary people if the
evolutionary interpretation were invalid. For example, the famous
mathematician Emile Borel thought about game theory before
Von Neumann but came to the conclusion that the minimax
theorem was probably false. So what hope would there be for the
rest of us, if even someone as clever as Borel couldn’t reason his
way to a solution of the simplest class of games!

There are many possible evolutionary interpretations of Nash
equilibria, which differ in the adjustment process by means of
which players may find their way to an equilibrium. In the simpler
adjustment processes, the payoffs in a game are identified with
how fit the players are. Processes that favour fitter strategies at the
expense of their less successful brethren can then only stop
working when we get to a Nash equilibrium, because only then
will all the surviving strategies be as fit as it is possible to be in the
circumstances. We therefore don’t need our players to be
mathematical whizzes for Nash equilibria to be relevant. They
often predict the behaviour of animals quite well. Nor is the
evolutionary significance of Nash equilibria confined to biology.
They have a predictive role whenever an adjustment process tends
to eliminate strategies that generate low payoffs.

For example, stockbrokers who do less well than their competitors
go bust. The rules-of-thumb that stockbrokers use are therefore
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subject to the same kind of evolutionary pressures as the genes of
fish or insects. It therefore makes sense to look at Nash equilibria
in the games played by stockbrokers, even though we all know that
some stockbrokers wouldn’t be able to find their way around a
goldfish bowl, let alone a game theory book.

Prisoner’s Dilemma

The most famous toy game of all is the Prisoner’s Dilemma. In the
traditional story used to motivate the game, Alice and Bob are
gangsters in the Chicago of the 1920s. The District Attorney
knows that they are guilty of a major crime, but is unable to
convict either unless one of them confesses. He orders their arrest,
and separately offers each the following deal:

If you confess and your accomplice fails to confess, then you go free.

If you fail to confess but your accomplice confesses, then you will be

convicted and sentenced to the maximum term in jail. If you both

confess, then you will both be convicted, but the maximum sentence

will not be imposed. If neither confesses, you will both be framed on

a tax evasion charge for which a conviction is certain.

The story becomes more poignant if Alice and Bob have agreed to
keep their mouths shut if ever put into such a situation. Holding
out then corresponds to cooperating and confessing to defecting,
as in the table on the left of Figure 7. The payoffs in the table
correspond to notional years in jail (on the assumption that one
util always corresponds to one extra year of freedom).

A less baroque story assumes that Alice and Bob each have access
to a pot of money. Both are independently allowed either to give
their opponent $2 from the pot, or to put $1 from the pot in their
own pocket. On the assumption that Alice and Bob care only
about money, we are led to the payoff table on the right of Figure 7
in which utils have been identified with dollars. In this case, the
altruistic strategy of giving $2 has been assigned the label dove,
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7. Two versions of the Prisoner’s Dilemma: in the version on the right,
dove represents giving and hawk represents taking

and the selfish strategy of taking $1 has been assigned the label
hawk.

Circling best replies reveals that the only Nash equilibrium in the
give-or-take version of the Prisoner’s Dilemma is for both Alice
and Bob to play hawk, although each would get more if they both
played dove. The gangster version is strategically identical. In the
unique Nash equilibrium, each will defect, with the result that
they will both spend a long time in jail, although each would get a
much lighter sentence if they both cooperated.

Paradox of rationality?

A whole generation of scholars swallowed the line that the
Prisoner’s Dilemma embodies the essence of the problem of
human cooperation. They therefore set themselves the hopeless
task of giving reasons why game theory’s resolution of this
supposed ‘paradox of rationality’ is mistaken (See Fallacies of the
Prisoner’s Dilemma, Chapter 10). But game theorists think it just
plain wrong that the Prisoner’s Dilemma captures what matters
about human cooperation. On the contrary, it represents a
situation in which the dice are as loaded against the emergence of
cooperation as they could possibly be.
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If the great game of life played by the human species were
adequately modelled by the Prisoner’s Dilemma, we wouldn’t have
evolved as social animals! We therefore see no more need to solve
an invented paradox of rationality than to explain why people
drown when thrown into Lake Michigan with their feet encased in
concrete. No paradox of rationality exists. Rational players don’t
cooperate in the Prisoner’s Dilemma because the conditions
necessary for rational cooperation are absent.

Fortunately the paradox-of-rationality phase in the history of
game theory is just about over. Insofar as they are remembered,
the many fallacies that were invented in hopeless attempts to show
that it is rational to cooperate in the Prisoner’s Dilemma are now
mostly quoted as entertaining examples of what psychologists call
magical reasoning, in which logic is twisted to secure some desired
outcome. My favourite example is Immanuel Kant’s claim that
rationality demands obeying his categorical imperative. In the
Prisoner’s Dilemma, rational players would then all choose dove,
because this is the strategy that would be best if everybody chose it.

Domination

The idea that it is necessarily irrational to do things that would be
bad if everybody did them is very pervasive. Your mother was
probably as fond of this argument as mine. The following
knock-down refutation in the case of the Prisoner’s Dilemma is
therefore worth repeating.

So as not to beg any questions, we begin by asking where the
payoffs that represent the players’ preferences in the Prisoner’s
Dilemma come from. The theory of revealed preference tells us to
find the answer by observing the choices that Alice and Bob make
(or would make) when solving one-person decision problems.

Writing a larger payoff for Alice in the bottom-left cell of the
payoff table of the Prisoner’s Dilemma than in the top-left cell
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therefore means that Alice would choose hawk in the one-person
decision problem that she would face if she knew in advance that
Bob had chosen dove. Similarly, writing a larger payoff in the
bottom-right cell means that Alice would choose hawk when faced
with the one-person decision problem in which she knew in
advance that Bob had chosen hawk.

The very definition of the game therefore says that hawk is Alice’s
best reply when she knows that Bob’s choice is dove, and also when
she knows his choice is hawk. So she doesn’t need to know
anything about Bob’s actual choice to know her best reply to it. It
is rational for her to play hawk whatever strategy he is planning to
choose. In this unusual circumstance, we say that hawk dominates
Alice’s alternative strategies.

Objections?

Two objections to the preceding analysis are common. The first
denies that Alice would choose to defect in the gangster
version of the Prisoner’s Dilemma if she knew that Bob had
chosen to cooperate. Various reasons are offered that depend on
what one believes about conditions in Al Capone’s Chicago, but
such objections miss the point. If Alice wouldn’t defect if she
knew that Bob had chosen to cooperate, then she wouldn’t be
playing the Prisoner’s Dilemma. Here and elsewhere, it is
important not to take the stories used to motivate games too
seriously. It is the payoff tables of Figure 7 that define the
Prisoner’s Dilemma – not the silly stories that accompany
them.

The second objection always puzzles me. It is said that appealing
to the theory of revealed preference reduces the claim that it is
rational to defect in the Prisoner’s Dilemma to a tautology. Since
tautologies have no substantive content, the claim can therefore be
ignored! But who would say the same of 2 + 2 = 4?
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Experiments

An alternative response is to argue that it doesn’t matter what is
rational in the Prisoner’s Dilemma, because laboratory
experiments show that real people actually play dove. The payoffs
in such experiments aren’t usually determined using the theory of
revealed preference. They are nearly always just money, but the
results can nevertheless be very instructive.

Inexperienced subjects do indeed cooperate a little more than half
the time on average, but the evidence is overwhelming in games
like the Prisoner’s Dilemma that the rate of defection increases
steadily as the subjects gain experience, until only about 10% of
subjects are still cooperating after ten trials or so.

Computer simulations are also mentioned which supposedly show
that evolution will eventually generate cooperation in the
Prisoner’s Dilemma, but such critics have usually confused the
Prisoner’s Dilemma with its indefinitely repeated cousin in which
cooperation is indeed a Nash equilibrium (See Tit-for-tat,
Chapter 5).
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Chapter 2

Chance

Conan Doyle’s analysis of his version of Matching Pennies in The
Final Problem doesn’t reflect much credit on his hero’s supposed
intellectual mastery. Edgar Allan Poe does better in the Purloined
Letter, in which the villain has stolen a letter, and the problem is
where to look for it.

Poe argues that the way to win is to extend chains of reasoning of
the form ‘He thinks that I think that he thinks that I think . . . ’ one
step further than your opponent. In defence of this proposition, he
invents a boy who consistently wins at Matching Pennies by
imitating his opponent’s facial expression, thereby supposedly
learning what he must be thinking. It is admittedly amazing how
many Poker players give their hands away by being unable to
control their body language, but Alice and Bob can’t both use
Poe’s trick successfully even if neither ever learns to keep a Poker
face.

Game theory escapes the apparent infinite regression with which
Alice and Bob are faced by appealing to the idea of a Nash
equilibrium. But we are still left with a problem, because the trick
of circling best replies doesn’t work for Matching Pennies. After
circling all the payoffs in Figure 3 that are best replies, we end up
with two Nash equilibria in the Driving Game, but none at all in
Matching Pennies.
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This fact may seem mysterious to those who remember that John
Nash won his Nobel Prize partly for showing that all finite games
have at least one equilibrium. The answer to the mystery is that we
need to look beyond the pure strategies we have considered up to
now, and consider mixed strategies as well.

Does randomizingmake sense?

A mixed strategy requires that players randomize their choice of
pure strategy. It is natural to object that only crazy people make
serious decisions at random, but mixed strategies are used all the
time without anyone realizing it.

My favourite example arose when I was advising a package holiday
company on a regulatory matter. Game theory predicts that such a
company will use a mixed strategy in the pricing game it has to
play when the demand for vacations proves to be unexpectedly
low. However, when I asked a senior executive whether his
company actively randomized their prices last year, he reacted
with horror at such an outlandish suggestion. So why were his
prices for similar vacations so very different? His answer was
instructive: ‘You have to keep the opposition guessing.’

His answer shows that he understood perfectly well why game
theory sometimes recommends the use of mixed strategies. What
he didn’t want to face up to is that his company’s method for
setting prices was essentially a randomizing device. Nobody cut
any cards. Nobody rattled a dice box. But from the point of view of
a rival trying to predict what his company would charge for two
weeks in the Bahamas, they might as well have done so.

Mixed Nash equilibria

The use of mixed strategies isn’t at all surprising in Matching
Pennies, where the whole point is to keep the opponent guessing.
As every child knows, the solution is to randomize between heads
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8. Rolling dice

and tails. If both players use this mixed strategy, the result is a
Nash equilibrium. Each player wins half the time, which is the
best that both can do given the strategy choice of the other.

Similarly, it is a Nash equilibrium in the Driving Game if both
players choose left and right with equal probability, which
therefore has three Nash equilibria, two pure and one mixed. The
same is also true in both Chicken and the Battle of the Sexes, but
the mixed Nash equilibrium in the Battle of the Sexes requires
more of the players than that they simply make each of their pure
strategies equally likely.

In the Battle of the Sexes, Bob likes boxing twice as much as ballet,
and so Alice must play box half as often as ball to ensure that he
gets the same payoff on average from his two pure strategies. Since
Bob doesn’t then care which of his pure strategies gets played, all
of his strategies are then equally good – including the mixed
strategy which makes ball half as likely as box. But the use of this
mixed strategy makes Alice indifferent between her two pure
strategies. So all of her strategies are then equally good – including
the mixed strategy which makes box twice as likely as ball. This
completion of the circuit shows that we have found a mixed Nash
equilibrium in which Alice and Bob each play their more favoured
strategy two-thirds of the time.
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Making the other guy indifferent

Rational players never randomize between two pure strategies
unless they are indifferent between them. If one strategy were
better, the inferior strategy would never get played at all. What
might make you indifferent between two strategies? In the Battle
of the Sexes, the reason is that you believe your opponent is going
to play a mixed strategy that equalizes the average payoff you get
from each of your strategies. This feature of a mixed Nash
equilibrium sometimes leads to results that look paradoxical at
first sight.

The Good Samaritan Game is played by a whole population of
identical players, all of whom want someone to respond to a cry
for help. Each player gets ten utils if someone helps, and nothing
if nobody helps. The snag is that helping is a nuisance, and so all
the players who offer help must subtract one util from their
payoffs.

If nobody else is planning to help, you do best by offering to help
yourself. If everybody else is planning to help, you maximize your
payoff by doing nothing. So the only possible Nash equilibrium in
which everybody independently uses the same strategy is
necessarily mixed. In such a mixed Nash equilibrium, there must
be precisely one chance in ten that nobody else offers help,
because this is the frequency that makes you indifferent between
helping and not helping.

The actual probability that help is offered in equilibrium is
somewhat higher, because there is some chance that you will offer
to help yourself. However, the probability that any single player
offers help in equilibrium has got to get smaller as the population
gets larger because the probability that nobody else helps has to
stay equal to 1/10. So the bigger the population, the lower the
chances that anyone will help. With only two players, each helps
with probability 9/10 and the cry for help is ignored only one time
in a hundred. With a million players, each helps with such a tiny
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probability that nobody at all answers the cry for help about one
time in ten.

The consequences can be chilling, as a notorious case in New
York illustrates. A woman was assaulted at length after dark, and
finally murdered in the street. Many people heard her cries for
help but nobody even phoned the police. Should we follow the
newspapers and deduce that city life makes monsters of us all?
Perhaps it does, but the Good Samaritan Game suggests that even
small-town folk might behave in the same way if put in the same
situation.

Voting has a similar character. To take an extreme case, suppose
that Alice and Bob are the only candidates for the presidency. It is
common knowledge that Bob is a hopeless case; only his mother
thinks he would be the better president. She is sure to vote, but
why should anyone else bother? As in the Good Samaritan Game,
adding more voters makes things worse. In equilibrium, Bob will
get elected with some irreducible probability even if there are a
million voters.

Such voting games are only toys. Real people seldom think
rational thoughts about whether or not to vote. Even if they did,
they might feel that going to the polling booth is a pleasure rather
than a pain. But the model nevertheless shows that the pundits
who denounce the large minority of people who fail to vote in
presidential elections as irrational are talking through their hats.
If we want more people to vote, we need to move to a more
decentralized system in which every vote really does count enough
to outweigh the lack of enthusiasm for voting which so many
people obviously feel. If we can’t persuade such folk that they like
to vote and we don’t want to change our political system, we will
just have to put up with their staying at home on election night.
Simply repeating the slogan that ‘every vote counts’ isn’t ever
going to work, because it isn’t true.
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Getting to equilibrium

How do people find their way to a Nash equilibrium? This
question is particularly pressing in the case of mixed equilibria.
Why should Alice adjust her behaviour to make Bob indifferent
between some of his strategies?

Sports studies show that athletes sometimes behave in quite close
accord with game theory predictions. Taking penalty kicks in
soccer is one example. Where should the ball be aimed? Which
way should the goalkeeper jump? Tennis is another example.
Should I smash or should I lob? It seems unlikely that coaches
read any game theory books, so how come they know the correct
frequency with which to choose each option? Presumably they
learn by trial and error.

Nobody understands all the different ways in which real people
learn new ways of doing things, but we have some toy models that
capture some of what must be going on. Even the following naive
model does surprisingly well.

Alice and Bob are robots who play the same game repeatedly. At
each repetition, Alice is programmed to play her best reply to a
mixed strategy in which each of Bob’s pure strategies is played
with the same frequency he has played it in the past. Bob has the
same program, so neither he nor Alice are fully rational, because
they could both sometimes improve their payoffs if they were
programmed more cleverly. Game theorists say that they are only
boundedly rational.

As time passes, the frequencies with which the robots have played
their second pure strategy evolve as shown in Figure 9 (which has
been simplified by passing from discrete to continuous time). For
example, Alice’s best reply in Matching Pennies is tails whenever
the current frequency with which Bob has played tails exceeds one
half. So her frequency for tails will increase until his frequency for
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9. Learning to play an equilibrium

tails falls below one half, after which it will abruptly begin to
decrease.

Following the arrows in Figure 9 always leads to a Nash
equilibrium. No matter how we initialize the robots, someone
counting how often they play each of their pure strategies will
therefore eventually find it hard to distinguish one of our
boundedly rational robots from a perfectly rational player.

In the case of Matching Pennies, which is closest to tennis or
soccer, the frequencies with which heads or tails are played always
converge on their equilibrium values of 1/2. In laboratory
experiments with human subjects, the general pattern is much the
same, although the frequencies don’t evolve in such a regular
manner and they begin to drift when they get near enough to a
mixed equilibrium, because the players are then nearly indifferent
between the available strategies.

The situation in Chicken is more complicated. Each pure
equilibrium has a basin of attraction. If we initialize our robots so
that they begin in the basin of attraction of a particular
equilibrium, they will eventually converge on that equilibrium.
The basin of attraction for (slow, speed) lies above the diagonal in
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Figure 9. The basin of attraction for (speed, slow) lies below the
diagonal. The basin of attraction for the mixed equilibrium is just
the diagonal itself.

It is easy to construct games in which the behaviour of robots like
Alice and Bob would cycle forever without ever settling down on
an equilibrium, but human beings are capable of learning in more
sophisticated ways than Alice or Bob. In particular, we commonly
enjoy a great deal of feedback from all kinds of sources when
learning how to behave when faced with a new game.

For example, rookie stockbrokers learn the ropes from their more
experienced colleagues. Young scientists peruse the history of
Nobel laureates in the hope of finding the secret of their success.
Novelists tediously recycle the plots of the latest best-seller.
Shoppers tell each other where the best bargains are to be found.
Toy models of such social or imitative learning converge more
quickly and reliably on Nash equilibria than models in which
single individuals learn by trial and error.

Evolutionary game theory is the study of such dynamic models. Its
application to evolutionary biology is so important that it gets a
chapter all to itself (Chapter 8).

Minimax theorem

When a youthful John Nash called at Von Neumann’s office to tell
him of his proof that all finite games have at least one equilibrium
when mixed strategies are allowed, Von Neumann was dismissive.
Why didn’t he welcome Nash’s contribution?

It is true that the method Nash used to prove his theorem wasn’t
anything new for Von Neumann, who had pioneered the method
himself. It is also true that Nash’s approach was probably not very
tactful, since he famously called on Albert Einstein around the
same time to tell him how to do physics. But Von Neumann had
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nothing to fear from a brash young graduate student muscling in
on his domain. I think there was a more fundamental reason for
Von Neumann’s lack of interest.

Von Neumann never seems to have thought much about the
evolutionary interpretation of game theory. He believed that the
purpose of studying a game should be to identify an unambiguous
rational solution. The idea of a Nash equilibrium doesn’t meet this
requirement, because most games have many Nash equilibria, and
there is often no purely rational reason for selecting one
equilibrium rather than another. As Von Neumann later
remarked, the best-reply criterion only tells us that some strategy
profiles can’t be the rational solution to a game, but we want to
know which strategy profiles can be regarded as solutions.

Minimax andmaximin

Von Neumann presumably restricted his attention to two-person,
zero-sum games because they are one of the few classes of games
in which his ideal of a unique rational solution can be realized. It
is unfortunate that his proof of this fact should be called the
minimax theorem, because the rational solution of a two-person,
zero-sum game is actually for each player to apply themaximin
principle. This tells you to work out the worst payoff you could get
on average from each of your mixed strategies, and then to choose
whichever strategy would maximize your payoff if this worst-case
scenario were always realized.

For example, the worst thing that could happen to Alice in
Matching Pennies is that Bob will guess her choice of mixed
strategy. If this mixed strategy requires her to play headsmore
than half the time, then he will play tails all the time. She will then
lose more than half the time and so her payoff will be negative. If
Alice’s mixed strategy requires her to play tailsmore than half the
time, then Bob will play heads all the time. She will again lose
more than half the time and so her payoff will again be negative.
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Alice’s maximin strategy is therefore to play heads and tails
equally often, which guarantees her a payoff of exactly zero.

Only a paranoic would find the maximin principle attractive in
general, since it assumes that the universe has singled you out to
be its personal enemy. However, if Alice is playing Bob in a
zero-sum game, he is the relevant universe and so the universe is
indeed her personal enemy in this special case.

Whymaximin?

Ironically, Von Neumann’s minimax theorem follows immediately
from Nash’s proof that all finite games have at least one Nash
equilibrium.

To see this, begin by locating a Nash equilibrium in a two-person,
zero-sum game. Call Alice’s equilibrium strategy row and Bob’s
equilibrium strategy column. The equilibrium payoffs will be
called Alice’s value and Bob’s value. For example, in Matching
Pennies both row and column are the mixed strategy in which
heads and tails are played with equal probability; Alice’s value and
Bob’s value are the zero payoff that each player gets on average if
they play this way.

Alice can’t be sure of getting more than Alice’s value because Bob
might always play column, to which her best reply is row. On the
other hand, Alice can be sure of getting at least Alice’s value by
playing row because the best that Bob can do is to reply with
column, and the best that Bob can do for himself in a zero-sum
game is the same as the worst he can do to Alice. So Alice’s value is
Alice’s maximin payoff, and row is one of her maximin strategies.

By the same reasoning, Bob’s value is his maximin payoff and
column is one of his maximin strategies. Since if Alice’s value and
Bob’s value sum to zero, it follows that so do their maximin
payoffs. Neither player can therefore get more than his or her
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maximin payoff unless the other gets less. So one can’t improve on
the maximin principle when playing a two-person, zero-sum game
against a rational opponent.

Von Neumann’s proof of this fact is called the minimax theorem,
because saying that Alice and Bob’s maximin payoffs sum to zero is
equivalent to saying that Alice’s maximin payoff equals her
minimax payoff. But one mustn’t make the common mistake of
thinking that Von Neumann therefore recommended using the
minimax principle. Nobody would want to work out the best
payoff you could get on average from each of your mixed
strategies, and then choose whichever strategy wouldminimize
your payoff if this best-case scenario were always realized!

Findingmaximin strategies

In retrospect, it is a pity that mathematicians took an immediate
interest in the minimax theorem. The study of pursuit-evasion
games in which a pilot seeks to evade a heat-seeking missile is
certainly an interesting exercise in control theory, but such work
naturally reinforces the prejudices of critics who are fixated on the
idea that game theorists are mad cyborgs. Nor is the popularity of
game theory likely to be enhanced by the abstruse finding that the
minimax theorem can only be true in certain infinite games if we
are willing to deny the Axiom of Choice. Game theory would have
found a more ready acceptance in its early years if enthusiasts
hadn’t made it all seem so difficult.

Rock-Scissors-Paper

Every child knows this game. Alice and Bob simultaneously make
a hand signal that represents one of their three pure strategies:
rock, scissors, paper. The winner is determined by the rules:

rock blunts scissors
scissors cuts paper
paper wraps rock .
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If both players make the same signal, the result is a draw, which
both players regard as being equivalent to a lottery in which they
win or lose with equal probability, so that the game is zero-sum.

It is obvious that the rational solution is for each player to use each
of their three pure strategies equally often. They each then
guarantee their maximin payoff of zero. The chief interest of the
game is that one has to work very hard to find an evolutionary
process that converges on this solution.

For example, the best-reply dynamics of Figure 9 end up cycling in
a manner that periodically nearly eliminates each strategy in turn.
One might dismiss this outcome as a curiosity if it weren’t for the
fact that the population mix of three varieties of Central American
salamanders who play a game like Rock-Scissors-Paper also end
up in a similar cycle, so that one variety always seems on the edge
of extinction.

O’Neill’s Card Game

Barry O’Neill used this game in the first laboratory experiment
that found positive support for the maximin principle. Previous
experiments had been discouraging. The eminent psychologist
William Estes was particularly scathing when reporting on his test
of Von Neumann’s theory: ‘Game theory will be no substitute for
an empirically grounded behavioral theory when we want to
predict what people will actually do in competitive situations.’

But in the experiment on which Estes based his dismissive
remarks, there were only two subjects, who are described as being
well practised in the reinforcement learning experiments that
Estes was using to defend the (now discredited) theory of
‘probability matching’. Neither subject knew that they were
playing a game with another person. Even if they had known they
were playing a game, the minimax theory would have been
irrelevant to their plight, since they weren’t told in advance what
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the payoffs of the game were. They were therefore playing with
incomplete information – a situation to which Von Neumann’s
minimax theory doesn’t apply.

In designing an experiment without such errors, O’Neill wanted to
control for the possibility that subjects might have different
attitudes to taking risks. For example, Rock-Scissors-Paper
wouldn’t be zero-sum if Alice and Bob didn’t both think a draw is
equivalent to winning or losing with equal probability. So O’Neill
experimented on a game with only winning or losing, but which
still has enough structure to make the solution unobvious.

Alice and Bob each have the ace and the picture cards from one of
the suits in a deck of playing cards. They simultaneously show a
card. Alice wins if both show an ace, or if there is a mismatch of
picture cards. Otherwise Bob wins.

Alice’s maximin strategy is found by asking which of her mixed
strategies makes Bob indifferent between all his pure strategies.
The answer is that Alice should play each picture card equally
often and her ace twice as often. Bob should do the same, with the
result that Alice will win two-fifths of the time and Bob will win
three-fifths of the time.

Duel

The game of Duel is the nearest we are going to get to a military
application. Alice and Bob walk towards each other armed with
pistols loaded with just one bullet. The probability of either hitting
the other increases the nearer the two approach. The payoff to
each player is the probability of surviving.

How close should Alice get to Bob before firing? This is literally a
question of life and death because, if she fires and misses, Bob will
be able to advance to point-blank range with fatal consequences
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for Alice. Since someone dies in each possible outcome of the
game, the payoffs therefore always sum to one.

One conclusion is obvious. It can’t be a Nash equilibrium for one
player to plan to fire sooner than the other, because it would be a
better reply for the player who is planning to fire first to wait a tiny
bit longer. But how close will they be when they simultaneously
open fire?

The minimax theorem gives the answer right away. Duel is
unit-sum rather than zero-sum, but the minimax theorem still
applies (provided the payoffs still sum to one when the players fire
simultaneously). The only difference is that the players’ maximin
payoffs now add up to one instead of zero. So if Alice is always
twice as likely to hit Bob as he is to hit her, they will both fire at
whatever distance makes Alice hit Bob two-thirds of the time and
Bob hit Alice one-third of the time.
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Chapter 3

Time

Games with perfect information

People sometimes think it frivolous to talk about human social
problems as though they were mere parlour games. The advantage
is that nearly everybody is able to think dispassionately about the
strategic issues that arise in games like Chess or Poker, without
automatically rejecting a conclusion if it turns out to be
unwelcome. But logic is the same wherever it is applied.

Parlour games

At first sight, it doesn’t look like Chess and Poker can be
represented by payoff tables, because time enters the picture. It
not only matters who does what – it matters when they do it.

Some of the difference is illusory. In the general case, a pure
strategy is a plan of action that tells a player what to do under all
possible contingencies that might arise in a game. The players
can then be envisaged as choosing a strategy once and for all at
the beginning of the game, and then delegating the play of the
game to a robot. The resulting strategic form of Chess will then
look just like Chicken or the Battle of the Sexes, except that its
payoff table will be zero sum and have immensely more rows and
columns.
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Von Neumann argued that the first thing one should do in any
game is to reduce it to its strategic form, which he called its
normal form for this reason. However, the case of Chess makes it
clear that this isn’t always a very practical proposal, since it has
more pure strategies than the estimated number of electrons in
the known universe! Even when the strategic form isn’t hopelessly
unwieldy, it is often a lot easier to work things out by sticking with
the extensive form of the game.

Game theorists use the analogy of a tree when describing a game
in extensive form. Each move corresponds to a point called a node
where the tree branches. The root of the tree corresponds to the
first move of the game. The branches at each node correspond to
the choices that can be made at that move. The leaves of the tree
correspond to the final outcomes of the game, and so we must say
who gets what payoff at each leaf. We must also say which player
moves at each node, and what that player knows about what has
happened so far in the game when making the move.

In Poker, the first move is made by a fictional player called Chance
who shuffles and deals hands to the real players. What the players
know about this move is extremely important in Poker, since the
game would be devoid of interest if everybody knew what
everybody else had been dealt. However, such games of imperfect
information will be left until the next chapter. All the games in this
chapter will be games of perfect information, in which nothing
that has happened in the game so far is hidden from players when
they make a move. Nor shall we consider games of perfect
information like Duel that have chance moves. Chess is therefore
the archetypal example for this chapter.

Backward induction

Backward induction is a contentious topic, but everybody agrees
that we would always be able to use it to find the players’ maximin
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values in a finite game of perfect information – if we had a large
enough computer and sufficient time. Given a large enough lever
and a place on which to stand, Archimedes was similarly correct
when he said he would be able to move the world. Applying
backward induction to Chess illustrates both its theoretical virtues
and its practical drawbacks.

Chess

Label each leaf of the game tree for Chess with WIN, LOSE, or
DRAW, depending on the outcome for White. Now pick any
penultimate node (where each choice leads immediately to a leaf
of the tree). Find the best choice for the player who moves at this
node. Label the penultimate node with the label of the leaf to
which this choice leads. Finally, throw away all of the tree that
follows the penultimate node, which now becomes a leaf of a
smaller tree in which the players’ maximin values are unchanged.

Now do the same again and again, until all that is left is a label
attached to the root of the original tree. This label is White’s
maximin outcome.

No matter how big and fast the computers we eventually build,
they will never be able to complete this program for Chess,
because it would take too long. So we will probably never know the
solution of Chess. But at least we have established that, unlike
Bigfoot or the Loch Ness Monster, there really is a solution for
Chess.

If White’s maximin outcome is WIN, then she has a pure strategy
that guarantees her a victory against any defence by Black. If
White’s maximin outcome is LOSE, Black has a pure strategy that
guarantees him a victory against any defence by White. However,
most experts guess that White’s maximin outcome is DRAW, which
implies that both White and Black have pure strategies that
guarantee a draw against any defence.
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10. Two board games

If these experts are right, then the strategic form of Chess has a
row in which all the outcomes are WIN or DRAW and a column in
which all the payoffs are LOSE or DRAW as in Figure 10. Without
the backward induction argument, I am not sure that this fact
would seem at all obvious.

Hex

Piet Hein invented this game in 1942. It was reinvented by Nash
in 1948. People say that he had the idea while contemplating the
hexagonal tiling in the men’s room of the Princeton mathematics
department. There were indeed hexagonal tiles there, but Nash
tells me that he doesn’t recall finding them at all inspiring.

Hex is played between Black and White on a board of hexagons
arranged in a parallelogram, as in Figure 10. At the beginning of
the game, each player’s territory consists of two opposite sides of
the board. The players take turns in moving, with White going
first. A move consists of placing one of your counters on a vacant
hexagon. The winner is the first to link their two sides of the board,
so Black was the winner in the game just concluded in Figure 10.

As in Chess, we can theoretically work out the players’ maximin
payoffs using backward induction, but the method isn’t practical
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when the board is large. But we nevertheless know that White’s
maximin payoff is WIN. That is to say, the first player to move has a
strategy that guarantees victory against any defence by the second
player. How do we know this?

Note first that Hex can’t end in a draw. To see this, think of the
Black counters as water and the White counters as land. When all
the hexagons are occupied, water will then either flow between the
two lakes originally belonging to Black, or else the channel
between them will be dammed. Black wins in the first case, and
White in the second. So either Black or White has a winning
strategy.

Nash invented a strategy-stealing argument to show that the
winner must be White. The argument is by contradiction. If Black
were to play a winning strategy, White could steal it using the
following rules:

1. Put your first counter anywhere.

2. At later moves, first pretend that the last counter you played isn’t

on the board. Next pretend that all the remaining White counters

are Black and all the Black counters are White.

3. Now make the move that Black would make in this position when

using his winning strategy. If you already have a counter in this

position, just move anywhere.

This strategy guarantees you a win, because you are simply doing
what supposedly guarantees Black a win – but one move earlier.
The presence on the board of an extra White counter may result in
your winning sooner than Black would have done, but I guess you
won’t complain about that!

Since both players can’t be winners, our assumption that Black has
a winning strategy must be wrong. The winner is therefore
White – although knowing this fact won’t help her much when
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playing Hex on a large board, since finding White’s winning
strategy is an unsolved problem in the general case.

Notice that the strategy-stealing argument doesn’t tell us anything
at all about White’s actual winning strategy. She certainly can’t
guarantee winning after putting her first counter just anywhere. If
she puts her first counter in an acute corner of the board, you will
probably be able to see why Black then has a winning strategy in
the rest of the game.

It may also be fun to test your reasoning skills on a version of Hex
with which Princeton mathematicians supposedly used to tease
their visitors. An extra line of hexagons is added to the board so
that White’s two sides of the board become more distant than
Black’s. In the new game, not only is it Black who has a winning
strategy, but we can write his winning strategy down. However,
when visitors played as White against a computer, the board was
shown in perspective on the screen to disguise its asymmetry. The
visitors therefore thought they were playing regular Hex, but to
their frustration and dismay, somehow the computer always won!

Deleting dominated strategies

Every time you throw out a bunch of choices at a node while
carrying out a backward induction, you are discarding an
equivalent bunch of pure strategies. From the point of view of the
strategic form of the game you have reached at that stage, any
strategy you discard is dominated by a strategy which is exactly
the same except that it calls for a best choice to be made at the
node in question.

If we exclude the case when two strategies always yield the same
payoff, one strategy is dominated by another if it never yields a
better payoff, no matter what strategies the other players may use.
Thus hawk dominates dove in the Prisoner’s Dilemma (but not in
the Stag Hunt Game of Figure 18).
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We can therefore mimic backward induction in a game by
successively deleting dominated strategies in its strategic form. We
can sometimes reduce a strategic form to just one outcome by this
method even when not mimicking backward induction. The result
will always be a maximin outcome in a two-person, zero-sum
game. But what about games in general?

Any Nash equilibrium of a game you get by eliminating dominated
strategies from a larger game must also be a Nash equilibrium of
the larger game. The reason is that adding a dominated strategy to
your options in a game can’t make any of your current best replies
into something worse. You may sometimes lose Nash equilibria as
you delete dominated strategies (unless all the dominations are
strict), but you can never eliminate all Nash equilibria of the
original game.

Guessing games

If Alice trades on the stock market, she is hoping that the shares
she buys will rise in value. Since their future value depends on
what other people believe about them, investors like Alice are
really investing on the basis of their beliefs about other people’s
beliefs. If Bob plans to exploit investors like Alice, he will need to
take account of his beliefs about what she believes about what
other people believe. If we want to exploit Bob, we will need to ask
what we believe about what Bob believes about what Alice believes
about what other people believe.

John Maynard Keynes famously used the beauty contests run by
newspapers of his time to illustrate how these chains of beliefs
about beliefs get longer and longer the more one thinks about the
problem. The aim in these contests was to chose the girl chosen by
most other people. Game theorists prefer a simpler Guessing
Game in which the winners are the players who choose a number
that is closest to two-thirds of the average of all the numbers
chosen.
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If the players are restricted to whole numbers between 1 and 10
inclusive, it is a dominated strategy to choose a number above 7,
because the average can be at most 10, and 2

3 × 10 = 62
3 . You

therefore always improve your chances of winning by playing 7
instead of 8, 9, or 10. But if everybody knows that, nobody will
ever play a dominated strategy, then we are in a game in which the
players choose a number between 1 and 7 inclusive. The average in
this game can be at most 7, and 2

3 × 7 = 42
3 . So it is a dominated

strategy to choose a number above 5.

It will be obvious where this argument is going. If it is common
knowledge that no player will ever use a dominated strategy, then
all the players must choose the number 1.

Common knowledge

Something is common knowledge if everybody knows it,
everybody knows that everybody knows it, everybody knows that
everybody knows that everybody knows it; and so on. If nothing is
said to the contrary in a rational analysis of a game, it is always
implicitly being assumed that both the game and the rationality of
the players are common knowledge. Otherwise we wouldn’t be
entitled to use the idea of a Nash equilibrium to break into infinite
regressions of the form: ‘Alice thinks that Bob thinks that Alice
thinks that Bob thinks . . . ’

I once watched a quiz show called The Price is Right in which
three contestants guess the value of an antique. Whoever gets
closest to the actual value is the winner. If the last contestant
thinks the value is more than both the other two guesses, he
should obviously raise the higher guess by no more than one
dollar. Since this isn’t what happens, we would be foolish to try to
apply game theory to quiz shows on the assumption that it is
common knowledge that the contestants are rational. It is
therefore fortunate that the evolutionary interpretation of game
theory doesn’t require such strong assumptions.
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11. Kidnap

Subgame perfection

Daniel Ellsberg is best known for blowing the whistle on the
Nixon administration’s conduct of the war in Vietnam when he
leaked the Pentagon Papers to the New York Times in 1971. In an
earlier incarnation, he proposed the game of Kidnap.

Kidnap

Alice has kidnapped Bob. The ransom has been paid, and the
question now is whether she should release him or murder him.
Alice would prefer to release Bob if she could be sure that he
wouldn’t reveal her identity. Bob has promised to stay silent, but
can she trust his promise?

Figure 11 shows a game tree for Kidnap together with a
corresponding payoff table. Circling best replies reveals that there
is only one Nash equilibrium, in which Alice murders Bob because
she predicts that he will tell if released.

Deleting dominated strategies leads us to the same Nash
equilibrium. Bob’s strategy tell is always at least as good as silent.
So we begin by deleting silent. In the game that remains, Alice’s
strategymurder is always at least as good as release (because Bob
can only play tell in the reduced game). So we are left with only the
Nash equilibrium (murder, tell).
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Deleting dominated strategies in this way corresponds to using
backward induction in the game tree. First thicken the branch in
the game tree that represents Bob’s best choice of tell. Now forget
that Bob’s inferior choice is there at all, and thicken the branch
that represents Alice’s best choice ofmurder in the game that
remains. We can now see the equilibrium path that will be
followed when Alice and Bob play the Nash equilibrium
(murder, tell). In this case, a single thickened branch links the root
of the tree to a leaf; in a bigger game, the equilibrium path will be
a whole sequence of thickened branches that link the root to a leaf.

In games of perfect information like Kidnap, backward induction
always leads to strategies that are not only a Nash equilibrium in
the whole game, but also in all its subgames – whether they lie on
the equilibrium path or not. Reinhard Selten shared a Nobel Prize
with John Nash partly for introducing this class of equilibria. He
first called them perfect, but later changed his mind about what
perfection should mean. So now we call them subgame perfect.

Counterfactuals

Politicians like to pretend that hypothetical questions make no
sense. As George Bush Senior said in 1992 when replying to a
perfectly reasonable question about unemployment benefit: ‘If a
frog had wings, he wouldn’t hit his tail on the ground.’ But the
game of Kidnap shows why hypothetical questions are the life
blood of game theory – just as they ought to be the life blood of
politics.

Rational players stick to their equilibrium strategies because of
what they predict would happen if they were to deviate. The
subjunctives in this sentence appear because we are talking about
a counterfactual event – an event that isn’t going to happen. Far
from being irrelevant to anything real, such counterfactual events
always arise when a rational decision is made. Why doesn’t Alice
ever step in front of a car when crossing the road? Because she
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predicts that if she did, she would be run over. Why does Alice
murder Bob in Kidnap? Because she believes that he would tell on
her if she didn’t.

What would happen in subgames that won’t be reached therefore
matters. It is because of what would happen if they were reached
that they aren’t reached!

Changing the game?

Psychologists advise kidnap victims to try and build up a human
relationship with their captors. If Bob could thereby persuade
Alice that he cared sufficiently for her that his payoffs for
remaining silent or telling were reversed, then we would be
playing a different game that one might call Cosy Kidnap.

As Figure 12 shows, Cosy Kidnap has two Nash equilibria in pure
strategies: (murder, tell) and (release, silent). The equilibrium
(murder, tell) isn’t subgame perfect any more, because it calls for
Bob to make the inferior choice of tell in the subgame that is
unreached in equilibrium because Alice actually choosesmurder,
but which would be reached if Alice were to choose release instead.

However, the new equilibrium (release, silent) is subgame perfect.
It is therefore this equilibrium that will be played, provided that
Alice is rational and knows that Bob is rational. If the payoffs are

12. Cosy Kidnap

46



Tim
e

chosen according to the theory of revealed preference, then it is
tautological that Bob would play silent rather than tell if Alice
were to play release. Alice will therefore play release because she
knows it will yield a higher payoff thanmurder.

The moral is that rationality sometimes tells us more than simply
that Alice and Bob must play a Nash equilibrium.

UltimatumGame

Reinhard Selten has a mischievous sense of humour, and it may be
that he takes a delight in the controversy he created with his
notion of a subgame-perfect equilibrium. He certainly added fuel
to the fire when he proposed to his student Werner Güth that he
run a laboratory experiment on the subject. The experiment was
to see whether real people would play the subgame-perfect
equilibrium in the Ultimatum Game. Selten predicted that they
wouldn’t – and he was right.

The Ultimatum Game is a primitive bargaining game in which a
notional philanthropist has donated a sum of money for Alice and
Bob to share if they can agree on how to divide it. The rules specify
that Alice first makes a proposal to Bob on how to divide the
money. He may accept or refuse. If he accepts, Alice’s proposal is
adopted. If he refuses, the game ends with both players getting
nothing.

It is easy to apply backward induction to the game on the
assumption that both players care only about getting as much
money as possible. If Alice offers Bob a positive amount, he will
say yes, because anything is better than nothing. The most that
Alice will therefore offer is a penny. In a subgame-perfect
equilibrium, Alice therefore scoops the pot.

However, laboratory experiments show that real people usually
play fair. The most likely proposal is a fifty-fifty split. Proposals for
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an unfair split like seventy-thirty are refused more than half the
time, even though the responder then gets nothing at all. This is
the most replicated result in experimental economics. I have
replicated it myself several times. It doesn’t go away when the
stakes are increased. It holds up even in countries where the dollar
payoffs are a substantial fraction of the subjects’ annual income.
The result isn’t entirely universal, but one has to follow
anthropologists into remote parts of the world to find exceptions.

A new school of behavioural economists uses this result as a stick
with which to beat their traditional rivals. They say that the data
disprove the ‘selfishness axiom’ of orthodox economics. Their
challenge is therefore to the hypothesis that people care only about
money rather than to the logic of backward induction.

Actually, it isn’t axiomatic in economics that people are
relentlessly selfish. The orthodoxy is represented by the theory of
revealed preference. Everybody agrees that money isn’t
everything. Even Milton Friedman used to be kind to animals and
give money to charity. But it is also true that there are an
enormous number of experiments showing that most subjects do
eventually end up behaving as though they were primarily
interested in maximizing their dollar payoffs in all but a few
laboratory games. The Prisoner’s Dilemma is the norm rather than
an exception. So what is different about the Ultimatum Game?

I think that the answer lies in the fact that the rational and the
evolutionary interpretations of an equilibrium diverge when
applied to subgame-perfect equilibria.

The UltimatumMinigame

In this simpified version of the Ultimatum Game, the
philanthropist donates $4. Alice can make a fair or an unfair
proposal to Bob. The fair offer is to split the money fifty-fifty. Bob
automatically accepts the fair offer, but has the option of accepting
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13. UltimatumMinigame. Apart from the labels of the available
actions and some inconsequential changes in the payoffs, the game is
the same as Cosy Kidnap

or refusing the unfair offer, which assigns $3 to Alice and only $1
to Bob. Figure 13 shows the game tree and payoff table for the
UltimatumMinigame. Its analysis is the same as in Cosy Kidnap,
although here the logic of the argument is controversial because
critics don’t like where it leads.

The subgame-perfect equilibrium is (unfair, yes). Like Cosy
Kidnap, the game also has another Nash equilibrium: (fair,no).
In fact, it has lots of Nash equilibria in which Alice chooses fair
because Bob is planning to use a mixed strategy in which he says
no to the unfair offer with a sufficiently high probability.

The reason that we need to worry about Nash equilibria that aren’t
subgame perfect is that we haven’t any reason to suppose that an
evolutionary process will necessarily converge on the
subgame-perfect equilibrium. If the subjects are learning by trial
and error which equilibrium to play, they might therefore learn to
play any of the Nash equilibria of the UltimatumMinigame.

Figure 14 shows two different evolutionary processes in the
UltimatumMinigame. One is the best-reply dynamics we
encountered earlier; the other is the more complicated replicator
dynamics, which is usually regarded as a superior toy model of an
adjustment process (see Evalutionary Stability, Chapter 8).
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14. Evolutionary adjustment in the UltimatumMinigame. The
subgame-perfect equilibrium is S. The other Nash equilibria lie in the
setN. The latter all require the use of the weakly dominated strategy
no, butN still has a large basin of attraction in the case of the
replicator dynamics

The best-reply dynamics converge on the subgame-perfect
equilibrium, but this isn’t necessarily true of the replicator
dynamics. The set of Nash equilibria in which Alice plays fair has
a large basin of attraction in Figure 14.

Evolution doesn’t care that Bob’s choice of no is weakly dominated
in all of these equilibria. It is true that yes is always better than no
provided that Alice sometimes plays unfair, but the evolutionary
pressure against unfair can be so strong that it disappears
altogether. Once it has gone, no can survive, because Bob is then
indifferent between yes and no.

Fair conventions

We now have an explanation of the experimental data in the
Ultimatum Game that doesn’t require assigning different
preferences to the subjects than they reveal when playing the
Prisoner’s Dilemma in the laboratory.

In real life, Bob would be stupid to knuckle under when made an
unfair offer, because he can’t afford to acquire a reputation for
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being a soft touch. We therefore operate a convention in which
Alice is often refused if she makes an unfair offer. Subjects bring
this convention into the laboratory without realizing either that it
coordinates behaviour on an equilibrium in the game of life, or
that the game they are asked to play in the laboratory is very
different from the real-life games for which the convention is
adapted.

When subjects start by playing fair in the Prisoner’s Dilemma,
evolutionary pressures immediately start modifying their
behaviour, because the only Nash equilibrium in the Prisoner’s
Dilemma precludes any cooperation. The Ultimatum Game differs
from the Prisoner’s Dilemma in having many Nash equilibria. Any
split whatever of the available money corresponds to a Nash
equilibrium, for the same reason that the same is true in the
UltimatumMinigame. When Alice and Bob begin by playing fair
in the Ultimatum Game, there are no obvious evolutionary
pressures urging them towards the subgame-perfect equilibrium.
We therefore don’t need to invent some reason why they don’t
move much from where they started.

Game theorists are happy for behavioural economists to make the
case against selfishness. How else are we to explain why Milton
Friedman contributed to charity? But they make two errors when
they say: ‘Game theory predicts the subgame-perfect equilibrium
in the Ultimatum Game.’ The first is that game theory assumes
that players necessarily maximize money. The second is that
rational and evolutionary game theory always predict the same
thing.

Refinements

Evolution doesn’t always select subgame-perfect equilibria, but it
remains rational for Alice to solve the UltimatumMinigame by
backward induction when the payoffs are determined by the
theory of revealed preference. The standard assumption that Alice

51



G
am

e
Th

eo
ry

knows that Bob is rational is essential for this purpose, because
Alice needs to be sure that Bob’s behaviour will be consistent with
the payoffs assigned to him.

Does our standard assumption that the rationality of the players is
common knowledge imply that a subgame-perfect equilibrium
path will be followed in any finite game of perfect information?
Bob Aumann says yes, and one might think that he should know,
since he won his Nobel Prize partly for making common
knowledge into an operational tool. But examples like Selten’s
Chain Store paradox continue to keep the question open.

Chain Store paradox

The UltimatumMinigame can be reinterpreted as a game in
which Alice is threatening to open a store in a town where Bob
already runs a similar store. We just need to relabel Alice’s
strategies as out and in, and Bob’s as acquiesce and fight. Fighting
consists of initiating a price war, which is bad for both players.
Selten’s paradox arises when Bob runs a chain of stores in a
hundred towns and Alice is replaced by a hundred possible rivals
threatening to set up a rival store in each town.

Just as in the UltimatumMinigame, backward induction in the
100th game says that the 100th rival will enter the market, and
Bob will acquiesce. What happens in the 100th game is therefore
determined independently of what happens in previous games,
and so exactly the same argument applies in the 99th game.
Continuing in this way, we end up with the conclusion that the
rival will always enter and Bob will always acquiesce. But wouldn’t
Bob do better to fight the first few entrants so as to discourage
entry in the remaining towns?

The game tree of Figure 15 is a simplification in which there are
only two towns and the rival is always Alice. If she enters the first
town, Bob can acquiesce or fight. If she later enters the second
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15. A simplified Chain Store paradox. Apart from the labels of the
available actions, the subgame rooted at Alice’s secondmove is
identical to the UltimatumMinigame

town, he can again acquiesce or fight. If Alice stays out of the first
town, we simplify by assuming that she necessarily stays out of the
second town. Similarly, if Bob acquiesces in the first town, Alice
necessarily enters the second town, and Bob again acquiesces.

The thickened lines in Figure 15 show the result of applying
backward induction. If the great book of game theory
recommended following the subgame-perfect equilibrium path, it
would therefore be right for Alice to enter both towns and for Bob
to acquiesce each time. But will Alice and Bob follow the book’s
advice? To explore this question, put yourself in Bob’s position at
his first move.

Alice has just entered the first town as recommended by the book,
but what would she do if her second move were reached? The
answer depends on what she predicts Bob would do if his second
move were reached. If Alice knew that Bob were rational, then she
would predict that he would acquiesce. She should then enter, and
so Bob should acquiesce at his first move, as required by backward
induction. But Alice wouldn’t know that Bob is rational at her
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second move, because a rational Bob wouldn’t have fought at his
first move if the great book of game theory were right about what
is rational!

Alice began the game believing Bob to be rational, but if he plays
in a manner that is inconsistent with his preferences by fighting in
the first town, her belief will be refuted. And who knows what she
might believe after such a counterfactual event? Selten’s original
version of the paradox has 100 stores, because the common-sense
answer after Bob has fought in 50 towns is that he is likely to fight
in the 51st as well. But then the backward induction argument
collapses.

The paradox doesn’t cast doubt on backward induction as a way of
finding the maximin payoffs in two-person, zero-sum games. Nor
does it create a problem for the rationality of backward induction
in games like Kidnap or the Ultimatum Game. The players’ initial
belief that everyone is rational would still be refuted if someone
were to diverge from the equilibrium path, but this fact causes no
problem in these short games. But how are we to respond to the
paradox in longer games?

Typos

Subgame-perfect equilibria are said to be a refinement of the Nash
equilibrium concept. They are safe to use whenever the
circumstances make it sensible for the players to continue
behaving as though it is common knowledge that they are all
rational even though one or more irrational moves have been
made. A whole bestiary of even more refined refinements has been
created for use in games of imperfect information. These are based
on various different ideas about what beliefs would make sense in
the counterfactual event that a rational player were to play
irrationally. If George Bush Senior were to read the literature, it
would make his head swim! Fortunately, this phase in the history
of game theory is effectively over – although applied economists
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continue to appeal to whichever refinement in the bestiary comes
closest to confirming their own prejudices.

My own take on these issues is that we should follow Reinhard
Selten’s common-sense approach, which eliminates the need to
interpret counterfactuals at all. He recommends that we build
enough chance moves into the rules of our games to remove the
possibility that players will find themselves trying to explain the
inexplicable. In the simplest such models, the players are assumed
to make occasional mistakes. Their hands tremble as they reach
for the rational button and they press an irrational button by
mistake. If these mistakes are independent transient errors – like
typos – that have no implications for mistakes that might be made
in the future, then the Nash equilibria of the game with mistakes
converge on subgame-perfect equilibria of the game without
mistakes as we allow the frequency of mistakes to get very small.

Selten tried to downgrade subgame-perfect equilibria because he
decided that the limits of Nash equilibria in trembling-hand
games are what really deserve to be called perfect. But the rest of
the world only concedes that such equilibria are trembling-hand
perfect.

Thinkos

The reason that other game theorists were unwilling to endorse
Selten’s new definition can perhaps be traced to doubts about the
generality of his trembling-hand story. If we want a rational
analysis of a game to be relevant to the behaviour of real people
trying to cope intelligently with complex problems, we have to face
up to the fact that their mistakes are much more likely to be
‘thinkos’ than ‘typos’.

For example, nobody would think it reasonable to explain why the
owner of a chain of stores initiated a price war in 50 successive
towns by saying that he always meant to instruct his managers to
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acquiesce in the entry of a rival, but somehow always sent the
wrong message by mistake. The only plausible explanation is that
he has a policy of fighting entry, and hence is likely to fight in the
51st town whether this is foolish or not.

When chance moves are introduced that allow for such thinkos to
occur, the Nash equilibria of the game with mistakes needn’t
converge on a subgame-perfect equilibrium of the game without
mistakes. So Nash equilibria of the game without mistakes can’t
routinely be thrown away as irrelevant to a rational analysis. But
nor do we want to scrap backward induction. All Nash equilibria
of the game with mistakes are automatically subgame-perfect
because the mistakes ensure that every subgame is always reached
with positive probability. Backward induction is therefore a useful
tool when locating these equilibria.

Amoral?

The lesson I draw from the refinement controversy is that game
theorists went astray by forgetting that their discipline has no
substantive content. Just as it isn’t our business to say what people
ought to like, so it isn’t our business to say what they ought to
believe. We can only say that if they believe this, then they would
be inconsistent not to believe that. If we can’t analyse a game on
such consistency principles alone, then more information about
the players and their environment needs to be added to the game
until we can.
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Chapter 4

Conventions

There is no problem about which Nash equilibrium should be
regarded as the rational solution of a two-person, zero-sum game,
because any pair of maximin strategies is always a Nash
equilibrium in which the players get their maximin payoffs. But
things can be very different in games that aren’t zero sum.

For example, in the Battle of the Sexes, the maximin payoff for
both players is two-thirds. This happens to be the same as the
payoffs they both get in the game’s mixed equilibrium, but their
maximin strategies aren’t equilibrium strategies. Moreover, Alice
and Bob’s payoffs in both pure equilibria of the game are much
bigger than their maximin payoffs. So what should they do?

The Driving Game makes it obvious that there isn’t any point in
looking for a strictly rational answer. Any argument that might be
offered in favour of everyone driving on the left would be an
equally good argument for everyone driving on the right. People
sometimes say that the rational solution must therefore be the
mixed equilibrium in which everyone decides whether to drive on
the left or right at random, but this proposal seldom garners much
support!

To solve the Driving Game, we need a commonly accepted
convention as to whether we should drive on the left or the right.
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The fact that such a convention may be entirely arbitrary is
reflected in the fact that some countries have adopted the
convention of driving on the left and others of driving on the right.

Focal points

Societies sometimes choose conventions deliberately, as when
Sweden switched from driving on the left to driving on the right in
the early hours of 1 September 1967. However, one should perhaps
think of Sweden’s problem on this occasion as a multi-player
version of the Battle of the Sexes, with some players preferring the
traditional equilibrium and others preferring the equilibrium used
by the rest of continental Europe. Rationality alone can’t settle
such differences over how to solve equilibrium selection problems,
but the convention in Sweden is to follow the guidance of its
democratically elected government. On the other hand, it is only
necessary to observe the chaos at traffic signals in Naples to realize
that the guidance of a democratically elected government isn’t
enough to guarantee that a convention will be honoured.

Tom Schelling

What happens when no obvious convention is in place? Tom
Schelling ran a number of experiments in the 1950s which show
that we aren’t so helpless as you might think at first sight. He says
that the conventions that people invent when asked questions like
the following are focal points. Most people are surprised both at
their success in locating focal points, and at the arbitrary nature of
the contextual cues to which they find themselves appealing. An
important lesson is that the context in which games appear – the
way a game is framed – can make a big difference to how real
people play them.

1. Two players independently name heads or tails. They win nothing

unless both say the same, in which case each wins $100. What

would you say?
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2. You are to meet someone in New York tomorrow, but no

arrangements have been made about where or when the meeting

is to take place. Where will you go? At what time?

3. Alice, Bob, and Carol must each independently write down the

letters A, B, and C in some order. They all get nothing unless they

choose the same order, in which case the player whose initial is

first gets $300, the player whose initial is second gets $200, and

the player whose initial is third gets $100. What would you do if

you were Carol?

4. Alice and Bob are each given one of two cards. One card is blank

and the other is marked with a cross. A player can mark a cross on

the first card or erase the cross on the second. Nobody wins

anything unless there is one and only one cross on the two cards

when they are handed in. The player who hands in the card with

the cross then wins $200 and the player who hands in the blank

card wins $100. What would you do if given the blank card?

5. A philanthropist donates $100 to Alice and Bob – provided they

can agree on how to divide it. Each player is independently

required to claim a share. If the shares sum to more than $100,

nobody gets anything. Otherwise each player receives the amount

that he or she claimed. How much would you claim?

6. Alice loses $100 and Bob finds it. Bob is too honest to spend the

money, but is unwilling to return it unless suitably rewarded.

What reward would you offer to Bob if you were Alice? What

reward would you offer if Bob had already refused $20? What

reward would you offer if Alice and Bob had watched a television

programme together the previous evening on which some guru

announced that the fair split in such circumstances is for Bob to

get a reward of one-third of the total amount?

Most people say heads in the first question, because it is
conventional to say heads before tails when both are mentioned.
How well people do in the second question depends on their
familiarity with New York. Schelling asked New Englanders, who
strongly favoured Grand Central Station at noon. In the third
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question, Carol usually recognizes that alphabetical order is so
focal that she has to say ABC , although she will then get the
lowest payoff of the three players. In the fourth question, the
status quo is focal, and most people therefore choose to do
nothing. In the fifth question, a fifty-fifty split is almost universal.
The sixth question is more challenging. People usually manage to
coordinate effectively only after hearing about the guru, in which
case they nearly always take his advice.

Howmuch is conventional?

Daily life largely consists of playing a multitude of coordination
games with those around us. When young people learn how to play
these coordination games by emulating the successful players in
their environment, they usually don’t notice that they are playing a
game at all. They learn whatever convention is current in their
society without appreciating that the convention wouldn’t survive
in the long run unless it coordinated behaviour on an equilibrium.
When the convention itself evolved so long ago that its origins are
lost in the mists of time, it can even become conventional to deny
that the convention is conventional. It then becomes impossible to
recognize that other societies may be playing essentially the same
game as us, but that their different social history has led to a
different equilibrium of the game becoming focal.

David Hume was the first philosopher to say out loud that many of
our rules of social behaviour are no more solidly founded than the
convention we use to select an equilibrium in the Driving Game.
In his Treatise of 1739, he famously says:

Two men who pull the oars of a boat, do it by an agreement or

convention, although they have never given promises to each other.

Nor is the rule concerning the stability of possessions the less

derived from human conventions, that it arises gradually, and

acquires force by a slow progression . . . In like manner are

languages gradually established by human conventions without any
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16. David Hume

promise. In like manner do gold and silver become the common

measures of exchange, and are esteemed sufficient payment for

what is of a hundred times their value.

Most people have no difficulty in accepting the conventional
nature of language or money, but draw the line when philosophers
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like Hume suggest that the same is true in sensitive subjects like
ethics or religion. Sometimes their opposition to moral relativism
or evolutionary biology is so strong that they feel the need to
throw out game theory as well. But, whatever you may think of
Hume’s bathwater, game theory is a baby worth clasping to your
bosom.

Game theory can never be a threat to any consistent religious or
ethical system, because it has no more substantive content than
arithmetic or logic. It only says that some propositions aren’t
consistent with other propositions. Like arithmetic or logic, it can
therefore be used on either side of any argument.

Many game theorists are deeply religious – notably Bob Aumann,
who shared a Nobel Prize with Tom Schelling in 2006. Steve
Brams has even written a book using game theory to make
theological points. I am a sceptic myself, but my Natural Justice
accepts that some fairness principles are universal in the human
species. In brief, the only folk who need fear the use of game
theory are those whose beliefs are inconsistent.

Bad conventions

The mixed equilibrium in the Driving Game isn’t at all efficient,
since players who use it will end up in a stand-off half the time.
But it is an equilibrium nevertheless, and hence available as a
possible convention. I used to say that it is a convention that has
never actually emerged anywhere in the world, until corrected by
some Turks, who observed that I had obviously never visited
Turkey. But I have now, and I see what they mean.

Schelling’s Solitaire is a toy model intended to show how cultural
evolution can easily bring about such socially undesirable
conventions without any need for an evil genius plotting the
downfall of society in the background. It is played on a Chessboard
with Black and White counters. Each counter represents a

62



C
o
n
ven

tio
n
s

17. Schelling’s Solitaire

householder. The square the counter occupies represents his or
her house. The surrounding squares (up to eight) represent the
householder’s neighbourhood. So a counter on one of these
squares is a neighbour.

Each counter is sensitive to the colours of its neighbours. Whites
wish one half or more of their neighbours to be White. Blacks wish
one third or more of their neighbours to be Black. You operate the
evolutionary process by moving discontented counters to squares
on which they are content until nobody who wants to move has
anywhere they want to go. Schelling recommends starting with
Black counters on all the Black squares of the Chessboard and
White counters on all the White squares. You remove some of
these at random and then start the process. In Figure 17,
12 counters were removed.

The two configurations shown in Figure 17 are equilibrium
outcomes of the process. They differ because there is some
randomness in the initial configuration and in your choice of
which discontented counter to move next. But the equilibrium
that emerges nearly always has Black and White counters
occupying segregated neighbourhoods. It is worth playing
Schelling’s Solitaire a few times to get a feeling for how inexorable
the separation process can be. Everyone in the model would be
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content to live in a mixed neighbourhood but they end up with a
convention in which they are segregated.

Social dilemmas

Schelling’s Solitaire shows how easy it can be for a convention to
get established that nobody likes. Following the sociologist
Vilfredo Pareto, economists say that outcomes are inefficient when
there are other outcomes that everybody likes better. But if we
realize that we are operating an inefficient convention, aren’t we
being collectively irrational not to move to an efficient one?

Perhaps the most important role for game theory is to insist that
any reform needs to coordinate behaviour on an equilibrium if it
is to survive in the long run. If there is no satisfactory equilibrium
to which we can move, as in Schelling’s Solitaire, inventing a new
kind of rationality that somehow whitewashes over the
inconsistencies in individual behaviour implied by
out-of-equilibrium play can only make things worse. One only has
to look at the long history of failed utopias to see why.

Karl Marx is a major culprit. In treating Capital and Labor as
monolithic players in a mighty game, he failed to see that the
cohesion of a coalition depends on the extent to which it succeeds
in satisfying the aspirations of its individual members. The same is
true when a whole society is treated as though it were a single
individual written large. This isn’t to deny that group solidarity
can sometimes temporarily triumph over individual
incentives – even when there is no prospect of blacklegs being
punished by the comrades they betray. Nor is to deny that we
would arguably all be better off if we identified more often with
some conception of the common good. Such behaviour is certainly
selfless or even saintly, but we defraud ourselves if we insist that
more selfish behaviour is somehow irrational.
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As the grumpy philosopher Thomas Hobbes explained long ago:

Bees or Ants, live sociably one with another . . . and therefore some

man may perhaps desire to know why Mankind cannot do the same.

To which I answer . . . amongst these creatures, the common good

differeth not from the private.

In game theory terms, Hobbes is saying that the games that social
insects play with each other are games of pure coordination, but I
guess that most people would agree with me that the same is
seldom true of human beings.

The errors I am pointing out here are typical of intellectuals of the
left, but intellectuals of the right need not congratulate
themselves. They typically make the complementary error of
overlooking the possibility that there may be more efficient
equilibria than the equilibrium we are currently operating.

What game theory can contribute to such debates is a framework
within which one can realistically discuss what is or is not possible
for a society. What equilibria are available in the game we are
playing? Is there an equilibrium we all like better than the
equilibrium we are currently playing? If we don’t like any of the
available equilibria, can we change the rules of the game or the
players’ preferences somehow?

Suppose everybody behaved like that?

Social psychologists say that a situation in which achieving an
efficient outcome conflicts with the incentives of the individual
members of a group is a social dilemma. The Prisoner’s Dilemma
is the archetypal example.

You can usually tell that you are in a social dilemma by the fact
that your mother would register her disapproval of any hawkish
inclination on your part by saying, ‘Suppose everybody behaved
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like that?’ Immanuel Kant is sometimes said to be the greatest
philosopher of all time, but he too thought that it couldn’t be
rational to do something if it would be bad if everybody did it. As
his famous categorical imperative says: ‘Act only on the maxim
that you would will to be a universal law.’

For example, when waiting at an airport carousel for our bags, we
would all be better off if we all stood well back so that we could see
our bags coming. But if everybody else does that, it profits each
individual to edge forward a little, and so we all end up straining
our necks to peer over a wall of backs.

We would similarly all benefit if we turned our air conditioners
down when a brown-out is threatened, or if we didn’t use our lawn
sprinklers in a drought. The same applies when people stand up at
a football match, or when they conduct their business in slow
motion after reaching the head of a long line.

When large numbers of anonymous folk play such social
dilemmas, Kant and your mother are right to predict that
things will work out badly if everybody responds to their
individual incentives. But urging people to behave better in such
situations is seldom effective. Why should you lose out by
paying heed to your mother when everybody else is ignoring
theirs?

Tragedy of the Commons

The everyday social dilemmas described above are irritating, but
some social dilemmas spell life or death for those who must play
them. A toy example is called the Tragedy of the Commons by
political scientists.

A hundred families keep goats that graze on some common land.
Total milk production is maximized with a thousand goats in all.
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How many goats should each family keep to maximize its own
milk production?

At first sight, the answer seems to be ten, but it isn’t an
equilibrium for each family to keep ten goats. If all the other
families keep ten goats, your family’s optimal strategy isn’t to do
the same. You will do better by grazing one goat more, because
your family will enjoy all the benefit from the extra goat, while its
cost in terms of less grass for the other goats to eat will be shared
by the whole community. Families will therefore add extra goats to
their herd until the common is reduced to a desert. But this
outcome is very inefficient indeed.

The Tragedy of the Commons captures the logic of a whole
spectrum of environmental disasters that we have brought upon
ourselves. The Sahara Desert is relentlessly expanding southward,
partly because the pastoral peoples who live on its borders
persistently overgraze its marginal grasslands. We pump carbon
dioxide into the atmosphere as though there were no tomorrow.
We poison our rivers. We jam our roads with cars. We fell the
rainforests. We have plundered our fisheries until some fish stocks
have reached a level from which they may never recover.

Game theorists get a lot of stick for denying that the individual
behaviour that leads to such disasters is irrational. Our critics ask
how it can possibly be rational for a society to engineer its own
ruin. Can’t we see that everybody would be better off if everybody
were to grab less of the common resource? The error in such
reasoning is elementary. A player in the human game of life isn’t
some abstract entity called ‘everybody’. We are all separate
individuals, each with our own aims and purposes. Even when our
capacity for love moves us to make sacrifices for others, we each do
so in our own way and for our own reasons. If we pretend
otherwise, we have no hope of ever getting to grips with the
Tragedy of the Commons.
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Stag Hunt Game

Jean-Jacques Rousseau, the prophet of the French Revolution,
accepted that political games are seldom games of pure
coordination. His solution was to convert them into games of pure
coordination by changing our preferences: ‘If you would have the
general will accomplished, bring all the particular wills into
conformity with it.’

Game theorists overlook the impracticality of this radical
programme and focus instead on his parable of a stag hunt. Alice
and Bob agree to cooperate in hunting a stag, but when they
separate to put their plan into action, each may be tempted to
abandon the joint enterprise by the prospect of bagging a hare for
themselves.

Only slight changes in the payoffs of the give-and-take version of
the Prisoner’s Dilemma of Figure 7 are necessary to obtain the
Stag Hunt Game of Figure 18, but they are enough to make it a
Nash equilibrium for both players to play dove.

The Stag Hunt Game therefore looks like a game that doesn’t
create a social dilemma. If we find ourselves operating the
inefficient Nash equilibrium in which Alice and Bob both play
hawk, we can shift to the efficient Nash equilibrium in which they
both play dove. However, the payoffs in the Stag Hunt Game have
been carefully chosen to make such a shift hard to manage.

The basin of attraction of the inefficient equilibrium is large and
that of the efficient equilibrium is small. So it is difficult for
evolution to get us out of the basin of attraction of the inefficient
equilibrium and into the basin of attraction of the efficient
equilibrium. It is true that we aren’t animals who have to wait for
the slow forces of evolution to establish a new convention. We can
talk to each other and agree to alter the way we do things. But can
we trust each other to keep any agreement we might make?
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18. The Stag Hunt Game. The diagram on the right shows that the
basin of attraction for the Nash equilibrium (dove,dove) is much
smaller than the basin of attraction for the Nash equilibrium
(hawk,hawk). The basin of attraction for the mixed Nash equilibrium
in which dove is played two-thirds of the time is just the broken line

Variants of the Stag Hunt Game are used by experts in
international relations under the name of the Security Dilemma or
the Assurance Game to draw attention to the problems that can
arise even when the players are rational.

Suppose that the current convention is to play hawk, but Alice
seeks to persuade Bob that she plans to play dove in the future,
and so he should follow suit. Will he be convinced? Game theorists
think not. The reason is that whatever Alice is actually planning to
play, it is in her interests to persuade Bob to play dove. If she
succeeds, she will get 5 rather than 0 if she is planning to play
dove, and 4 rather than 2 if she is planning to play hawk.
Rationality alone therefore doesn’t allow Bob to deduce anything
about her plan of action from what she says, because she is going
to say the same thing no matter what her real plan may be! Alice
may actually think that Bob is unlikely to be persuaded to switch
from hawk and hence be planning to play hawk herself, yet still try
to persuade him to play dove.
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Trust?

This Machiavellian story shows that attributing rationality to the
players isn’t enough to resolve the equilibrium selection problem –
even in a seemingly transparent case like the Stag Hunt Game.
The standard response is to ask why game theorists insist that it is
irrational for people to trust one another. Wouldn’t Alice and Bob
both be better off if both had more faith in each other’s honesty?

Nobody denies that Alice and Bob would be better off if they
trusted each other. Nor do game theorists say that trust is
irrational. They only say that it isn’t rational to trust people
without a good reason: that trust can’t be taken on trust. For
example, no Neapolitan is likely to trust his fellow drivers to start
honouring traffic signals just because some authority figure says
that they should.

So how can we ever move from one equilibrium to another? The
collapse of the Soviet Empire provides a magnificent case study.
Some Eastern European countries successfully followed the
example of Sweden in the Driving Game by switching from a
command economy to a market economy more or less overnight.
They thereby minimized the opportunity for matters to slide out of
control – as in Gorbachev’s Russia – while the system was out of
equilibrium during the interregnum.

But it would be just as much a mistake to deduce from the Stag
Hunt Game that gradual transitions between conventions are
never possible as it would be to deduce from the Prisoner’s
Dilemma that the same is true of rational cooperation. Neither
game is adequate as a model of how whole societies work. They
are just toys, invented to make a particular point.
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Chapter 5

Reciprocity

If we want to understand a whole society, we can’t neglect the role
of reciprocity, which philosophers from Confucius to Hume have
identified as the mainspring of human sociality. If they are right,
then we all play our part in maintaining a complex network of
reciprocal arrangements with those around us. But we understand
how the system works no better than the physics we use when
riding a bicycle.

Game theory offers some insight into the nuts and bolts of such
self-policing understandings. How do they work? Why do they
survive? How much cooperation can they support?

Repeated games

In a one-shot game, Alice can’t promise to scratch Bob’s back
tomorrow if he will scratch her back today, because we have
implicitly assumed that they are never going to meet again. The
simplest setting in which reciprocity can arise requires the same
players to play the same game over and over again.

Repetition with a fixed horizon

The Prisoner’s Dilemma epitomizes the fact that cooperation
needn’t be rational. Does this unpleasant conclusion go away if
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Alice and Bob play repeatedly? If it is common knowledge that
Alice and Bob are to play the Prisoner’s Dilemma every day for the
next week, backward induction says that the answer is no.
Politicians get dismissed as lame ducks near the end of their
period in office for much the same reason.

On Saturday – the last day of the week – Alice and Bob will be
playing the regular Prisoner’s Dilemma, in which it is rational to
play hawk. On Friday, they will therefore know that nothing they
do today can affect what will happen tomorrow. So they will play
hawk on Friday. Working backward through each day of the week,
we find that rational players will always play hawk. (There are also
Nash equilibria that aren’t subgame perfect, but all these also
require that hawk is played on the equilibrium path.)

Indefinite repetition

Should we conclude that rational cooperation is impossible even
when the Prisoner’s Dilemma is repeated? This would be a rash
conclusion, because it isn’t realistic to assume that Alice and Bob
are sure that they will never interact again after next Saturday. In
real life, relationships are nearly always open-ended. So what
happens in the repeated Prisoner’s Dilemma if it isn’t common
knowledge that Alice and Bob will never meet again? The answer
is that rational cooperation now becomes feasible.

In the simplest toy model, Alice and Bob always believe that there
is some positive probability that they will play the Prisoner’s
Dilemma at least one more time, no matter how many times they
may have played in the past. If this probability is large enough and
the players care enough about their future payoffs, then the
repeated game has many Nash equilibria. In some of these, dove is
always played on the equilibrium path.

To see this, it is enough to look at the GRIM strategy, which
requires Alice always to play dove in the indefinitely repeated
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Prisoner’s Dilemma unless Bob ever plays hawk. If he does play
hawk, the GRIM strategy says that Alice should retaliate by
permanently switching to hawk herself. If both players use the
GRIM strategy, neither will provoke the other into playing hawk,
and so they will both play dove all the time. But is the pair
(GRIM, GRIM) a Nash equilibrium?

All best replies to the GRIM strategy tell Bob never to be the first to
play hawk. If he does play hawk, the best payoff stream he could
get in the future is 3, 1, 1, 1, . . ., which is worse than the payoff
stream of 2,2,2, . . . he gets by always playing dove. As the GRIM

strategy always calls for the play of dove when matched against
itself, it follows that the choice of GRIM by Bob is a best reply to
the choice of GRIM by Alice. Since the same is true of Alice, the
pair (GRIM, GRIM) is a Nash equilibrium for the indefinitely
repeated Prisoner’s Dilemma.

Punishment

Critics who mistakenly believe that game theory denies that
people are naturally altruistic sometimes take umbrage at the idea
that cooperation supposedly can’t work without the threat of
punishment. They particularly dislike the GRIM strategy because it
punishes any deviation from the equilibrium path with relentless
determination.

Such critics are right to the extent that the threat of punishment
is intrinsic to reciprocal cooperation. If Alice tells Bob that she
will scratch his back if he will scratch hers, the implication is that
she won’t scratch his back if he won’t scratch hers. People don’t
usually provide a service unless they expect to get something in
return. If the service isn’t reciprocated, then it will be withdrawn.
Sometimes, a disservice will be offered instead. However,
extravagant punishments like those built into the GRIM strategy are
only encountered in extreme circumstances in real life. Everyday
punishments are more usually proportional to the offence.
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19. Reciprocal grooming by chimps

We are so habituated to responding appropriately to the small
punishments that are provoked by our small offences that we
seldom even notice that we are responding at all. Subliminal
signals from those around us are automatically translated into
behaviour without any conscious control. No stick is commonly
flourished. What happens most of the time is that the carrot is
withdrawn a little. Shoulders are turned slightly away. Greetings
are imperceptibly gruffer. Eyes wonder elsewhere. These are all
warnings that your body ignores at its peril, because they signal
that more serious social exclusion will follow if you don’t mend
your ways.

Altruism?

The fact that game theorists think that more cooperation is
reciprocal than is generally appreciated doesn’t imply that they
hold that cooperation is impossible without reciprocity. If people
have sufficiently altruistic preferences, then rational cooperation
ceases to be problematic even in one-shot games. For example, if
Alice and Bob have utilitarian preferences that make them want to
maximize the sum of both their payoffs rather than their own
individual payoffs, then it would be a Nash equilibrium for both to
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play dove in the Prisoner’s Dilemma. (We shall encounter exactly
this case when Alice and Bob are identical twins in the
Hawk-Dove Game in Chapter 8.)

How much people care about each other is an empirical question
on which game theory is necessarily silent. My own view is that
although the human cocktail obviously contains more than a
smidgen of Dr Jekyll, I wouldn’t join a utopia that denies the
existence of Mr Hyde.

Such utopias sometimes work well enough to begin with, but the
original sweetness and light notoriously erode as the players
unconsciously respond to their incentives. Here, for example, is an
IRS Commissioner explaining why a survey showed that the
percentage of the public who thought it OK to cheat on their taxes
was up from 11% to 17% over the previous five years: ‘It’s a basic
sense of fairness. Somebody out there is complying with the law,
and they see others doing things, and over time, they feel like
chumps’ (Mark Everett inUSA Today, 8 April 2004). So the IRS
continues to audit on the assumption that nearly everybody will
eventually find an excuse to cheat if they don’t provide adequate
disincentives.

Folk theorem

Can strategies other than GRIM support rational cooperation in
the indefinitely repeated Prisoner’s Dilemma? What of rational
cooperation in other repeated games?

Although game theory’s answer to these questions is called the folk
theorem, there is no Professor Folk. After Nash published his ideas
on Nash equilibrium, Bob Aumann found that everybody in the
business already seemed to know about the implications for
repeated games, and so he decided that his thoughts on the
subject should be regarded as folk wisdom.

75



G
am

e
Th

eo
ry

David Hume had already explained how reciprocity works in 1739,
but I don’t suppose that Aumann knew anything about his work.
The biologist Robert Trivers was equally ignorant of Aumann’s
ideas when he reinvented them under the heading of reciprocal
altruism 20 years later. It was only with the publication of
Axelrod’s Evolution of Cooperation in 1984 that the idea finally
stopped being rediscovered – in much the same way that America
ceased being discovered after the voyage of Columbus in 1492.

The Trust Minigame

As a small child, I remember wondering why shopkeepers hand
over the goods after being paid. Why don’t they just pocket the
money?

Economists call this the hold-up problem. My favourite example is
the Antwerp diamond market. Traders hand over enormously
valuable diamonds for inspection without even asking for a
receipt. Why don’t they get cheated? I found the neatest
explanation in the New York Times of 29 August 1991. When asked
why he could rely on the honesty of the owner of the antique store
that sold his finds on commission, a dealer unfamiliar with the
GRIM strategy replied: ‘Sure I trust him. You know the ones to
trust in this business. The ones who betray you, bye-bye.’

The Trust Minigame is a toy game that highlights these questions
of trust and reputation. When Alice delivers a service to Bob,
trusting him to reciprocate by making a payment in return, their
predicament is essentially the same as in the game Kidnap of
Figure 11. To see why, just relabel Alice’s release strategy as deliver
and Bob’s silent strategy as pay.

Since Kidnap has a unique subgame-perfect equilibrium, the same
is true of the Trust Minigame. Alice doesn’t deliver the service,
because she predicts that Bob won’t pay. But the folk theorem tells
us that all payoff pairs in the heavily shaded region of Figure 20
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20. The folk theorem. The shaded regions show the cooperative payoff
regions for the Prisoner’s Dilemma and the Trust Minigame. These are
the sets of payoff pairs on which the players could agree if pre-play
bargains were enforceable. The deeply shaded triangles show the
payoff pairs per game that the folk theorem shows to be available as
equilibrium outcomes in the repeated versions of the two games when
the players are sufficiently patient

are Nash equilibrium outcomes of the indefinitely repeated
game – including the payoff pair (2, 1) that arises when Alice
always delivers and Bob always pays.

To understand why the folk theorem works, it is useful to ask what
possibilities would be open to Alice and Bob if they were to
bargain in advance about how to play the one-shot Trust
Minigame. One possibility is that they might agree on any of the
three payoff pairs in the table of Figure 11. These payoff pairs are
located at the corners of the shaded triangle in Figure 20. The
remaining points in the triangle can be achieved as compromises
obtained by tossing coins or taking turns. For example, the payoff
pair that results if Alice and Bob agree that she will always deliver
but he will only pay half the time lies midway between the pairs
(0,2) and (2, 1). Since it consists of all possible compromises on
which Alice and Bob might agree, the shaded triangle is called the
cooperative payoff region for the Trust Minigame.
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The problem with the bargaining story is that it won’t work
without some kind of external agency willing and able to enforce
any contracts that Alice and Bob may write. Without such an
external agency, any agreements between Alice and Bob must be
self-policing. That is to say, it must be optimal for a player to keep
the agreement provided that the other does so too. It follows that
only Nash equilibria are available as viable deals. So the only
possibility for rational players in the one-shot Trust Minigame is
the inefficient outcome in which Alice doesn’t deliver because Bob
isn’t going to pay. But what happens if the game is repeated
indefinitely often?

It always remains a Nash equilibrium in a repeated game to keep
playing a Nash equilibrium of the one-shot game, but the folk
theorem says that there are always lots more equilibria. If the
players are sufficiently patient and the probability that the game
will be played at least one more time is sufficiently high, then any
payoff pair inside the cooperative payoff region is available as a
Nash equilibrium outcome – provided it pays both players their
minimax values or more.

The basic argument is so easy that it is no wonder it was
discovered by pretty much everyone who gave repeated games any
thought after Nash published his equilibrium idea in 1951. Pick
any potential agreement inside the cooperative payoff region. To
make this into a Nash equilibrium outcome, we need only punish
any players who deviate from the strategy they need to follow in
order to implement the agreement. For the purposes of the
argument, it is easiest to use the kind of implacable punishment
characteristic of the GRIM strategy, in which any deviation is
punished forever in the most severe manner available.

What is the most severe punishment Alice can inflict on Bob?
The worst she can do is to hold him to his minimax payoff –
because he will respond to her attempt to minimize his payoff by
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making the reply that maximizes his payoff given her choice of
punishment strategy. In the Prisoner’s Dilemma, the minimax
payoff for both players is 0. In the Trust Minigame, Alice’s
minimax payoff is 1 and Bob’s is 0. The heavily shaded regions in
Figure 20 therefore show all self-policing agreements for the
indefinitely repeated versions of the Prisoner’s Dilemma and the
Trust Minigame. No other agreements can be supported as Nash
equilibrium outcomes.

What can go wrong?

Easy though it is to prove, I think the folk theorem embodies
perhaps the most significant insight available to political
philosophy. It says that we don’t need an external enforcement
agency – whether real or invented – to cooperate successfully. In a
repeated situation, we can enjoy all the fruits of cooperation by
acting as our own policemen.

However, the folk theorem has a major limitation. It assumes that
any deviations from equilibrium will be observed by the other
players. This is probably not a bad assumption in the case of the
small bands of hunter-gatherers in which human culture first
evolved. As in the small towns of today, presumably everybody
knew everybody else’s business. But this certainly isn’t true of
modern city life. In the anonymity of a big city, it isn’t possible to
detect and punish deviants often enough to deter cheating. We do
our best with CCTV cameras, policemen, auditors, tax inspectors,
and the like, but nobody would want to claim that our efforts in
this direction are anywhere near efficient.

I wish I could say that game theorists have all the answers to the
imperfect monitoring problem, but it remains largely terra
incognita in spite of the efforts of many clever people. This is
perhaps the area of game theory in which further progress would
have the greatest social benefits.
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Tit-for-tat

Most social scientists think that everything they need to know
about reciprocity is summarized in the strategy TIT-FOR-TAT for
the indefinitely repeated Prisoner’s Dilemma. It tells a player to
begin by playing dove and then to copy whatever the other player
did last time. It is a Nash equilibrium if both Alice and Bob play
TIT-FOR-TAT just as it is a Nash equilibrium if they both play
GRIM, but TIT-FOR-TAT doesn’t punish a deviation relentlessly.
Repentant sinners are forgiven after they return to the fold by
playing dove again.

The popularity of TIT-FOR-TAT derives from Bob Axelrod’s
Olympiad, in which social scientists were invited to submit
computer programs to be matched against each other in the
indefinitely repeated Prisoner’s Dilemma. After learning the
outcome of a pilot round, the contestants submitted programs that
implemented 63 of the infinite number of possible strategies for
the game.

The most successful strategy in the competition was TIT-FOR-TAT.
So Axelrod continued by simulating the effect of evolution
operating on all 63 strategies. The fact that TIT-FOR-TAT was the
most numerous of all the surviving programs at the end of the
evolutionary simulation clinched the question for Axelrod, who
then proceeded to propose TIT-FOR-TAT as a suitable paradigm for
human cooperation across the board. In describing its virtues, he
says:

What accounts for TIT-FOR-TAT’s robust success is its combination

of being nice, retaliatory, forgiving and clear. Its niceness prevents it

from getting into unnecessary trouble. Its retaliation discourages

the other side from persisting whenever defection is tried. Its

forgiveness helps restore mutual cooperation. And its clarity makes

it intelligible to the other player, thereby eliciting long-term

cooperation.
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But to describe TIT-FOR-TAT as the most successful strategy in
Axelrod’s simulation was to gild the lily. Six of the strategies
entered for Olympiad survived the evolutionary process, and so
the true winner was the mixed strategy in which the surviving
strategies are played with the frequency with which they were
present when the process stabilized. The frequency of
TIT-FOR-TAT in this mixture of six strategies was actually only a
little more than one-sixth. Nor is the limited success TIT-FOR-TAT
enjoyed in the simulation robust when the initial population of
entries is varied. The unforgiving GRIM does extremely well when
the initial population of entries isn’t biased in favour of
TIT-FOR-TAT.

Axelrod defined a nice strategy to be one that is never the first to
play hawk, but it isn’t true that we can count on evolution to
generate nice behaviour as he suggests. When some small fraction
of suckers worth exploiting is allowed to flow continually into the
system, mean strategies outperform TIT-FOR-TAT. The simplest
such mean strategy is TAT-FOR-TIT, which begins by playing hawk
and thereafter switches its action if and only if the opponent
played hawk last time. Two TAT-FOR-TIT strategies are a Nash
equilibrium in the infinitely repeated Prisoner’s Dilemma, in
which cooperation is achieved only after the first round of play.

As for clarity, it is only necessary for cooperation to evolve that a
mutant be able to recognize a copy of itself.

All that is then left on Axelrod’s list is the requirement that a
successful strategy be retaliatory. This is perhaps the claim that
has done most harm, because it applies only in pairwise
interactions. For example, it is said that reciprocity can’t explain
the evolution of friendship. It is true that the offensive–defensive
alliances of chimpanzees can’t be explained with a tit-for-tat story.
If Alice needs help because she is hurt or sick, her allies have no
incentive to come to her aid, because she is now unlikely to be
useful as an ally in the future. Any threat she makes to withdraw
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her cooperation will therefore be empty. But it needn’t be the
injured party who punishes a cheater in multi-person interactions.
Others will be looking on if Bob abandons Alice to her fate, and
they will punish his faithlessness by refusing to form alliances with
him in the future. After all, who wants to make an alliance with
someone with a reputation for abandoning friends when they are
in trouble?

I think the enthusiasm for TIT-FOR-TAT survives for the same
reason that people used to claim that it is rational to cooperate in
the one-shot Prisoner’s Dilemma. They want to believe that
human beings are essentially nice. But the real lesson to be
learned from Axelrod’s Olympiad and many later evolutionary
simulations is infinitely more reassuring. Although Axelrod’s
claims for TIT-FOR-TAT are overblown, his conclusion that
evolution is likely to generate a cooperative outcome seems to be
genuinely robust. We therefore don’t need to pretend that we are
all Dr Jekylls in order to explain how we manage to get on with
each other fairly well much of the time. Even a society of Mr
Hydes can eventually learn to coordinate on an efficient
equilibrium in an indefinitely repeated game.

Emergent phenomena

Game theory models of social relationships are sometimes
criticized as reductionist because they make no reference to
notions like authority, blame, courtesy, duty, envy, friendship,
guilt, honour, integrity, justice, loyalty, modesty, ownership, pride,
reputation, status, trust, virtue, and the like. The inference is that
game theory is an inhuman discipline which treats people like
robots.

It is true that – like all successful sciences – game theory is
reductive, but it doesn’t follow that game theorists think that
concepts like authority or duty are irrelevant to human behaviour.
On the contrary, we believe that such notions are emergent
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phenomena that arise when people try to make sense of the
equilibria they find themselves playing in the game of life.

For example, the folk explanation of the equilibrium in which
Alice always delivers and Bob always pays in the Trust Minigame
is that Bob can’t afford to lose his reputation for honesty by
cheating on Alice, because she will then refuse to provide any
service to him in the future. In practice, Bob will usually be
someone new, but the same equilibrium works just as well,
because nobody will be any more ready than Alice to trade with
someone with a reputation for not paying.

Far from denying such stories, game theory offers a nuts-and-bolts
explanation of why they sometimes work – and why they
sometimes fail. For example, our critics say that we are wrong
about the Trust Minigame, because people still pay up, even in
one-shot games in which their reputation for honesty is irrelevant.
But I notice that filling stations increasingly make you pay in
advance for your petrol, presumably because they have
experienced the subgame-perfect equilibrium in the one-shot
Trust Minigame too often to be willing to play that game any
more.

Authority

David Hume tells us that the authority of popes, presidents, kings,
judges, policemen, and the like is just a matter of convention and
habit. Alice obeys the king because such is the custom – and the
custom survives because the king will order Bob to punish Alice if
she fails to obey. But why does Bob obey the order to punish Alice?
In brief, who guards the guardians?

Game theory answers this ancient question by showing that a
version of the folk theorem holds not only for Nash equilibria, but
for subgame-perfect equilibria as well. When such an equilibrium
is in use, it is always optimal to punish any deviant behaviour that
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leads us to a subgame off the equilibrium path. If you deviate
yourself by trying to evade the cost of punishing a deviant, you will
take us to another subgame where it is optimal for some other
player to punish you. If he fails to do so, we go to yet another
subgame – and so on forever.

Immanuel Kant naively thought that to contemplate such chains
of responsibility is to initiate an infinite regress, but the folk
theorem shows that the chains of responsibility can be bent back
on each other. With only a finite number of players, these chains of
responsibility are necessarily closed in a manner that Kant failed
to consider. Alice obeys the king because she fears Bob will
otherwise punish her. Bob would obey the order to punish Alice
because he fears that Carol will otherwise punish him. Carol
would obey the order to punish Bob because she fears that Alice
will otherwise punish her.

At first sight, such a spiral of self-confirming beliefs seems too
fragile to support anything solid. It is true that the beliefs go
round in a circle, but the folk theorem shows that their fragility is
an illusion, since the behaviour generated by the beliefs holds
together as a subgame-perfect equilibrium.

Duty

Anthropologists tell us that pure hunter-gatherer societies have no
authority structure. Food is gathered and distributed on the
principle that all contribute according to their ability, and benefit
according to their need.

How can such a social contract survive? If only the tit-for-tat
mechanism were available, why would anybody share food with
powerless folk outside their family? But the punishment for failing
to share needn’t be administered by whoever is left to go hungry.
In modern foraging bands, the whole group joins in punishing a
deviant.
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To see how this can work, imagine a toy world in which only a
mother and a daughter are alive at any time. Each player lives
for two periods. The first period is her youth, and the second
her old age. In her youth, a player bakes two (large) loaves of
bread. She then gives birth to a daughter, and immediately grows
old. Old players are too feeble to work, and so produce nothing.

One equilibrium requires each player to consume both her loaves
of bread in her youth. Everyone will then have to endure a
miserable old age, but everyone will be optimizing given the
choices of the others. All players would prefer to consume one loaf
in their youth and one loaf in their old age. But this ‘fair’ outcome
can only be achieved if the daughters all give one of their two
loaves to their mothers, because bread perishes if not consumed
when baked.

Mothers can’t retaliate if their daughters are selfish, but the fair
outcome can nevertheless be sustained as an equilibrium. In this
fair equilibrium, a conformist is a player who gives her mother a
loaf if and only if her mother was a conformist in her youth.
Conformists therefore reward other conformists, and punish
nonconformists.

To see why a daughter gives her mother a loaf, suppose that Alice,
Beatrice, and Carol are mother, daughter, and granddaughter. If
Beatrice neglects Alice, she becomes a nonconformist. Carol
therefore punishes Beatrice, to avoid becoming a nonconformist
herself. If not, she will be punished by her daughter – and so on. If
the first-born player is deemed to be a conformist, it is therefore a
subgame-perfect equilibrium for everybody to be a conformist.
However, the injured party is never the person who punishes an
infringement of the social contract. Indeed, the injured party is
dead at the time the infringement is punished!

In real life, we say that daughters have a duty to care for their
helpless mothers. The model shows how such duties could be
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honoured in a rational world even if all daughters were
stonyhearted egoists.

Role of the emotions

Emotions were once dismissed as irrational urges left over from
our evolutionary history. The socially aroused emotions associated
with pride, envy, and anger are still counted among the seven
deadly sins. But if these emotions are as self-destructive as
tradition holds, how come evolution equipped us with them? I
share the now widely held view that tradition is plain wrong in
seeing no useful role for our emotional reactions to social events.

For example, the prototypical scenario for the expression of anger
arises when Alice treats Bob unfairly. In his anger at her injustice,
he is then likely to inflict some harm on her. Alice therefore takes
care to keep her acquisitive urges under control lest she incur
his ire.

In this way, it is possible to sustain efficient equilibria in repeated
games without any of the players even being aware that they are
playing a repeated game. How else would chimpanzees be capable
of sustaining high levels of reciprocal altruism? How would
humans be capable of the same feat if we always had to spend half
an hour or more calculating what to do before taking any action?
Some of our thinking in these situations must surely be hardwired,
and perhaps getting into an emotional state is simply how it feels
when our autopilot takes over the controls.

Revenge

Suppose Bob risks damage to himself in launching an angry attack
on Alice after she has treated him unfairly. His behaviour might
then easily be dismissed as irrational by observers who fail to
notice that he isn’t necessarily acting wildly in a one-shot game,
but may be carrying through his part of an equilibrium in an
indefinitely repeated game.
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Experiments on the Ultimatum Game currently provide a focus
for this kind of confusion. Why don’t experimental subjects accept
anything they are offered in one-shot versions of the Ultimatum
Game? A popular answer is that they get angry and refuse out of
spite. Analysis of the testosterone levels in their sputum would
seem to confirm that this explanation is right insofar as it goes.

But why do responders get angry? I think that they get angry
because this is their habituated response to an unfair offer in the
situations in which we encounter ultimata in real life. Such
behaviour survives in repeated situations because it serves to
police an equilibrium. It is triggered in one-shot laboratory games
because the subjects don’t initially appreciate how the laboratory
game differs from the games of life to which they are accustomed.
But it doesn’t follow that we are mere robots controlled by our
emotions. Subjects commonly adapt their behaviour to the
one-shot games they play in the laboratory as they gain
experience. In the Prisoner’s Dilemma, it takes only about ten
trials for 90% of subjects to learn that playing dove doesn’t make
sense in a one-shot game.
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Chapter 6

Information

In a game of perfect information like Chess, the players always
know everything that has happened so far in the game. When
information is imperfect, we have to keep track of what the players
know as they climb the game tree. Von Neumann taught us to do
this using the simple idea of an information set.

Figure 21 shows two ways of expressing a simultaneous-move
game like Matching Pennies as a tree with information sets. It
doesn’t matter who moves first if the player who moves second
doesn’t know what action the first player has taken, so we can
make either Alice or Bob move first. In the case when Alice moves
first, we enclose Bob’s two decision nodes in an information set to
indicate that he doesn’t know whether he is at his left node or his
right node when he moves.

The more information sets we put into an extensive form, the
smaller its strategic form becomes. The reason is that a pure
strategy only specifies an action at each of a player’s information
sets – not at each of the decision nodes it contains.

If we took away the information set in the version of Matching
Pennies in which Alice goes first, Bob would have 4 = 2 × 2 pure
strategies, each of which specifies a choice of one of his two actions
for each of Alice’s two actions. With the information set, he can’t
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21. Information sets for Matching Pennies. A player can’t distinguish
between two decision nodes enclosed in the same information set.
Alice’s payoffs are always in the southwest of each box

make his action contingent on Alice’s action, because he isn’t
informed of her action. So he only has two pure strategies, one for
each of his actions.

Poker

The archetypal game of imperfect information is Poker. Unlike
Chess, we can solve simple versions of Poker explicitly.

It was Von Neumann’s analysis of Poker that made me into a game
theorist. I knew that good Poker players bluff a lot, but I just didn’t
believe that it could be optimal to bluff as much as Von Neumann
claimed. I should have known better than to doubt the master!
After much painful calculation, I not only had to admit that he
was right, but found myself hopelessly hooked on game theory
ever after.

However, you are in for a disappointment if you hope to make
yourself rich by playing your maximin strategy at the Poker table.
Players at the World Poker Championships in Las Vegas play a lot
more like Von Neumann recommends than amateurs like you and
me, but legendary players like the great Amarillo Slim don’t
triumph because they play according to the minimax theorem.
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22. Full house

Not only would playing your maximin strategy yield an average
profit no better than zero in a fair game, it would mostly be as
entertaining as watching paint dry.

For example, if Alice were dealt four eights when playing Bob at
Straight Poker, her maximin strategy says to reraise four times –
but then to fold if Bob raises her again! To make money at a real
Poker table, you need to be a lot more enterprising. You must
actively seek out and exploit the psychological flaws of your
opponents. But unless you are a natural master of human
psychology like Amarillo Slim, your naive attempts to exploit the
flaws of others are likely to end up with them exploiting yours
instead!

Bluffing

Don’t worry if you don’t know the difference between a straight
flush and a full house, or the betting rules in Texas Hold’em. Von
Neumann’s toy model abstracts all such complications away.

Alice and Bob are each dealt a number between 0 and 1. Both aim
to maximize their average dollar earnings on the assumption that
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all numbers are equally likely to be dealt to your opponent,
regardless what is dealt to you. So if Alice is dealt 0.667, she thinks
it roughly twice as likely that she has a higher card than Bob.

Before the deal, each player puts an ante of $1 into the pot. After
the deal, there is a round of betting, during which Bob may fold. If
he folds, Alice wins the pot, no matter who has the better hand. If
Bob doesn’t fold, there is a showdown, after which the player with
the higher card takes the pot. The showdown occurs when Bob calls
Alice’s bet by making his total contribution to the pot equal to hers.

Von Neumann’s model severely restricts the betting possibilities.
Alice can first either check (by adding $0 to the pot), or raise (by
adding $1 to the pot). If she checks, Bob must call. If Alice raises,
Bob has a choice. He can fold or call.

Figure 23 shows the players’ maximin strategies in Von
Neumann’s model. Everybody who plays nickel-and-dime Poker
knows that Alice must sometimes raise with poor hands, or Bob

23. Maximin play in Von Neumann’s Poker model. The graph on the
left shows how the probability with which Alice or Bob should bet high
varies with their hands. (Only one of Bob’s many optimal strategies is
shown.) The graph on the right shows that optimal play in our
simplified version has a similar character
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will learn never to call when she raises with a good hand.
Amateurs try to compromise by bluffing with middle-range hands,
but the maximin strategy isn’t so timid. If you want to break even
at Poker against good opposition, bluff a lot with really bad hands!
The point of bluffing is not so much that you might win with a bad
hand, as that you want to encourage the opposition to bet with
middle-range hands when you have a good hand.

An even simpler model

The next model simplifies Poker even more by replacing Von
Neumann’s numerical cards by a deck with only the King, Queen,
and Jack of Hearts. However, Figure 23 shows that the maximin
strategies still look like those in Von Neumann’s model.

The chance move that begins the game tree in Figure 24
represents the dealer shuffling the deck into one of six equally
likely orders. The top card is then dealt to Alice, and the second
card to Bob. The rest of the game tree then shows Von Neumann’s
betting rules in operation with the new deck of cards.

The game tree looks so formidable that you will probably be
surprised to find that you know everything you need to solve the
game. First delete dominated strategies by thickening branches
that are obviously better than their rivals. For example, Alice
should check when holding the Queen, because Bob only calls
when he has her beat. Only two decisions then remain in doubt.
Does Alice bluff when holding the Jack? Does Bob call when
holding the Queen?

Figure 25 shows all the pure strategies of the game, but only the
shaded part of the strategic form matters, because the strategies
that don’t correspond to the shaded part are dominated. The
figure also shows a close-up of the shaded part. We can work out
the mixed Nash equilibrium of this game by finding what
strategies Alice and Bob must use to make their opponent
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24. Von Neumann’s model. After lines have been thickened to show
dominant actions, only the cases in which Alice holds the Jack and Bob
holds the Queen remain

indifferent. It turns out that Alice should play RCR (raise when
holding the Jack) with probability 1/3. Bob should play CCF (call
when holding the Queen) with probability 1/3.

Types

According to the philosopher Hobbes, man is characterized by his
strength of body, his passions, his experience, and his reason. In
game theory, Alice’s strength of body is determined by the rules of
the game. Her passions translate into her preferences, and her
experience into her beliefs. Her reason leads her to behave
rationally.
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25. The payoff table for Von Neumann’s Poker model. The strategy
RCR for Alice requires that she raises when holding the King, checks
when holding the Queen, and raises when holding the Jack. The
strategy CFF for Bob requires that he calls when holding the King,
folds when holding the Queen, and folds when holding the Jack

These four properties determine a player’s type. Unless someone
says otherwise, a rational analysis of a game takes for granted that
the types of all the players are common knowledge. This very large
assumption is sometimes emphasized by saying that information
is complete in a game.

When is it reasonable to assume that information is complete? A
game like Chess creates no problem, but what about Chicken? Is it
really likely that Alice will know Bob’s degree of risk aversion
sufficiently well to work out his payoffs? What will Bob believe
about her payoffs? What will Alice believe about what Bob believes
about her payoffs?

John Harsanyi

Alice doesn’t know Bob’s hand in a Poker game. Bob doesn’t know
what Alice believes about his hand. Alice doesn’t know what Bob
believes about what she believes about his hand. And so on. We
close this seemingly infinite chain of beliefs about beliefs by
assuming that the chance move which represents shuffling and
dealing the cards is common knowledge. John Harsanyi taught us
how to use a similar trick whenever information is incomplete.
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Harsanyi had an eventful life for an academic. As a Jew in
Hungary, he escaped disaster by the skin of his teeth not once, but
twice. Having evaded the death camps of the Nazis, he crossed
illegally into Austria with his wife to escape persecution by the
Communists who followed. And once in the West, he had to build
his career again from scratch, beginning with a factory job in
Australia.

As with many truly original minds, his talent was initially
unrecognized. It took 25 years for economists to appreciate the
ingenuity of his idea for dealing with incomplete information, but
he was still alive when they awarded him a Nobel Prize in 1994,
alongside John Nash and Reinhard Selten, for his work on
incomplete information in games. Whether his equally important
work on utilitarianism will ever be adequately recognized now
that he is dead remains to be seen.

Incomplete information

Although economists talk about games of incomplete information,
there is really no such thing. Harsanyi’s theory shows how a
situation with incomplete information can sometimes be
transformed into a game of imperfect information, which we then
analyse using Nash’s idea of an equilibrium.

When information is incomplete, the problem is usually that the
players may be of various types with different preferences and
beliefs. Harsanyi proposed handling this kind of situation as
though each player were dealt a type, as in a game of Poker.

The characteristics of such a typecasting move need to be common
knowledge if Harsanyi’s approach is to work. Economists seem
untroubled by this requirement, but my own view is that the
method is only genuinely viable when all the knowledge that needs
to be held in common is actually available in a database that
everybody knows everybody can access.
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26. Incomplete information in Chicken

One-sided ignorance in Chicken

Middle-aged businessmen often play Chicken when driving
oncoming cars in narrow streets. In the version with one-sided
ignorance shown in Figure 26, everything about the game is
common knowledge except Bob’s largest payoff – the payoff he
gets from speeding when Alice goes slow.

To apply Harsanyi’s method, imagine a chance move that deals
Bob his type, which is identified with his top payoff in this
example. A pure strategy for Bob then says what action he would
take for each type he might be dealt.

The probabilities with which the chance move deals different types
to Bob are determined by Alice’s beliefs. To tie things down,
assume it is common knowledge that Alice believes that Bob’s type
is equally likely to be anything between 3 and 9. If St Francis of
Assisi were driving Bob’s car he would doubtless be of type 3, but
even Attila the Hun has a type no greater than 9 in this toy model.

The implicit subjunctives built into this modelling technique often
create unease. If Bob knows he isn’t a saint, why should he behave
as though he were playing a game in which he might be St Francis?
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The reason that we need Bob to examine how he would have
behaved for all possible types that he might have been is that Alice
doesn’t know which of these types has been realized. Since her
choice of strategy depends on what Bob would have done if his
type were something other than it actually is, Bob can’t decide
what to do when he knows that his type is 4 1

2 or 5 3
4 without

simultaneously considering what he would have done if his type
were any of the other possibilities.

Bob learns his type but Alice remains ignorant of the outcome of
the typecasting move. She therefore has only two strategies: slow
and speed. Bob has an enormous number of strategies, but we only
consider those in which he chooses slow if his type is less than
some number and speed if it is larger.

We have previously located three Nash equilibria for Chicken: two
pure and one mixed. The pure equilibria continue to be equilibria
in the game with one-sided ignorance. The first equilibrium
corresponds to the convention Ladies’ First: Alice plays speed and
Bob always plays slow whatever his type turns out to be. The
second equilibrium corresponds to the convention Gentlemen
First: Alice plays slow and Bob always plays speed.

Where no such convention is available – as when driving in heavy
traffic – we have to look at an analogue of the mixed equilibrium of
Chicken in which each player chooses slow and speed equally
often. We begin by making Alice indifferent between slow and
speed. Any mixed strategy is then optimal for her. Bob can make
Alice indifferent by choosing to play slow when his type is between
3 and 6, and speed when his type is between 6 and 9. It will then
seem to Alice that Bob is playing slow and speed equally often. But
Alice mustn’t play slow and speed equally often as in the mixed
equilibrium of Chapter 2, since it now has to be optimal for Bob to
switch from slow to speed when his type is 6. To make him
indifferent between slow and speed when his top payoff is 6, Alice
must play speed three times as often as slow.
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Notice how the accident rate goes up when we make Alice
ignorant of Bob’s type. In the mixed equilibrium of the original
version of Chicken, Alice and Bob each chose speed half the
time, and so the probability is 1/4 that both players speed and so
cause an accident. In the corresponding equilibrium of the version
with one-sided ignorance, the probability of an accident rises
to 3/8.

Two-sided ignorance in Chicken

The second example of Figure 26 is more fun than the first, since
both Alice and Bob are now ignorant, but the symmetry of the
problem makes it even simpler to analyse.

We follow Harsanyi again by introducing a chance move that
independently deals a type to each player that the other believes is
equally likely to be anything between 3 and 9. The interesting
equilibrium arises when Alice and Bob both play slow when their
type is less than 5 and speed when their type is more than 5. It will
then seem to both players that their opponent is playing speed
twice as often as slow. A player with a top payoff of 5 will then be
indifferent between playing slow and speed. Optimal play for both
Alice and Bob then consists of switching from slow to speed when
their type reaches 5.

The probability of an accident is now 4/9, which is an increase on
the probability of 3/8 we found in the case of one-sided ignorance,
but we are about to see that increasing the level of ignorance can
sometimes make the players better off.

Ignorance is bliss?

Alice and Bob are about to play the Nash equilibrium we just
found for Chicken with two-sided ignorance. Each is of type 4, and
so both are planning to play slow. There is then no possibility of an
accident and each player will receive a payoff of 3 utils.
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Pandora is a well-informed dogooder who observes that Alice and
Bob are basing their choice of strategy on a false premise. Each is
behaving as though their opponent might have any type between 3
and 9, but their opponent’s type is actually 4. Pandora therefore
intervenes with a public announcement that makes it common
knowledge that Alice and Bob are both of type 4. Alice and Bob
then play the familiar mixed equilibrium for Chicken in which
each player chooses slow and speed half the time. So Pandora’s
intervention increases the probability of an accident to 1/4 and
reduces Alice’s and Bob’s average payoff to 1 1

2 utils.

Increasing everybody’s knowledge can therefore make everybody
worse off. Better knowledge is only sure to be an unmitigated good
to a player if it is secretly acquired. Thus if Pandora secretly tells
Alice what the game really is, Alice will switch from slow to speed,
and her payoff will improve from 3 to 4 utils.

The conclusion that revealing information can hurt a society raises
an important ethical question. Should it be legitimate for
politicians to conceal the truth for our own good? John Stuart Mill
is perhaps the most benign of a number of philosophers from Plato
onwards who have answered yes to this question, but my own view
is no. I keep my mouth shut when I learn that someone is cheating
on their marriage, but I want people to think it right to blow the
whistle in public life. Lies that supposedly further the public
interest usually turn out to benefit only the liars who tell them.

Signalling your type

When people play Chicken in real life, they look out for clues that
may signal the type of their opponent. Is Alice driving a dented old
pick-up truck? Is Bob wearing a dog collar?

To be effective in signalling a player’s type, a signal must usually be
costly to send. If Alice is dealt a pair of twos in Poker, it won’t help
her to tell Bob that she has been dealt four aces. Game theorists
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dismiss such idle bombast as cheap talk. Bob will only pay
attention if Alice puts her money where her mouth is. But if she
bluffs by betting like she has four aces, she risks being called and
losing her bet.

Returning to Chicken with two-sided ignorance, suppose that
both Alice and Bob can simultaneously send a costly signal that
says, ‘I am a high type – don’t mess with me.’ If some types send
this signal to register their strength, then remaining silent
becomes a signal of weakness. We therefore need to contemplate a
new game in which both players have a strategic opportunity to
signal strength or weakness before playing Chicken. We look at a
particular subgame-perfect equilibrium in which players whose
type exceeds 5 signal strength, and players whose type is less than
5 signal weakness.

If Alice claims to be strong by sending the signal and Bob
implicitly admits to being weak by remaining silent, the
equilibrium requires that they play Chicken according to the rule:
Ladies First. That is to say, Alice speeds and Bob goes slow. If Bob
sends the signal and Alice doesn’t, they play according to the rule:
Gentlemen First. Bob then speeds and Alice goes slow.

The more interesting cases arise when either both or neither send
the signal. We have already seen how to analyse the versions of
Chicken with two-sided ignorance that result. In the case when
both send a signal, it becomes common knowledge that both types
lie between 5 and 9. It is then a Nash equilibrium if players whose
type is less than 6 choose slow and players whose type is more than
6 choose speed. In the case when neither sends a signal, it becomes
common knowledge that both types lie between 3 and 5. It is then
a Nash equilibrium if players whose type is less than 4 choose slow
and players whose type is more than 4 choose speed.

It is only at the final step that any new considerations arise. It
needs to be optimal for players whose type is more than 5 to send
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the signal and for players whose type is less than 5 to remain
silent. A player whose type is exactly 5 will then be indifferent
between sending the signal and remaining silent. We therefore
need to work out what a player of type 5 expects to get in the two
cases. For the equilibrium to hold together, the cost of claiming to
be tough must be equal to the difference between these two
payoffs. The difference turns out to be 2 1

6 utils, and so the cost of a
signal must also be 2 1

6 utils if the equilibrium is to work.

Displays

Costly signalling is of major importance in bargaining. Delay is
frequently used for this purpose. For example, during a strike,
complaints are sometimes made about the irrationality of union
officials who don’t plan to consider the latest offer from the
employer until Tuesday week. Union officials are doubtless
sometimes irrational, but exactly the same tactic might be used by
rational players sending a costly signal of their strength. In its
crudest form, a bargainer might rationally display his strength
simply by burning a bundle of bank notes.

Biology offers wonderful examples. Avishag Zahavi describes
costly signalling as the Handicap Principle. Why do some skylarks
sing when pursued by a hawk? To signal that they are swift enough
to escape even when they handicap themselves by singing. Young
hawks still give chase, but they soon learn not to bother. Why do
peacocks have such magnificent tails? Part of the reason is
runaway sexual selection. Peahens like big tails and so peacocks
with big tails father more chicks. But big tails presumably began
as a costly signal of a peacock’s fitness.

101



Chapter 7

Auctions

Alice now becomes a boss who wants her subordinates to work
towards her aims rather than pursuing their own interests. In the
language of economics, Alice is a principal and the subordinates
are her agents.

Alice could tell her agents what to do under all possible
contingencies, but there are two reasons why such command
economies are notoriously inefficient. The first is that it is difficult
for a principal to monitor her agents to ensure that they are
following her rules rather than doing their own thing. The second
reason is that the agents often know their own business better
than the principal.

Mechanism design

The rules that Alice can monitor and enforce create a game for the
agents to play. To persuade the agents to pursue her aims rather
than their own in situations that she is unable to monitor or lacks
the expertise to regulate, she needs to invent suitable incentives to
motivate the agents. The problem of finding a good system of
regulations and incentives is calledmechanism design.

The chief insight from game theory is that people should be
expected to change their behaviour after a new reform is
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introduced. Their behaviour will adjust until they eventually settle
on a Nash equilibrium of the new game. When Alice evaluates a
possible new mechanism, she should therefore ask herself how
much she likes what will happen after the agents have moved to an
equilibrium of the new game. The almost universal mistake that
real principals make is to ask instead how much they like what will
happen before the agents learn the ropes of the new game.

In a real-life example, the new chairman of the controlling body of
a university health scheme argued in favour of abolishing its
co-pay arrangements. These require you to pay the first hundred
pounds or so of any claim you make, with a view to discouraging
frivolous use of the service. To make up the lost revenue, he
proposed that the premiums be increased by enough to cover the
co-pay receipts from the previous year. When the economist on
the committee objected that the premiums would need to be
increased by more than this, a vote was taken on whether anyone
else thought that ‘people would visit their doctor when they didn’t
need to’. Only the economist voted yes to this loaded question, but
there wasn’t enough money to pay the bills in the following year.

The United States Congress made a bigger mistake in 1990 when
it passed an act intended to ensure that Medicare wouldn’t pay
substantially more for its drugs than private health providers. The
basic provision of the act said that a drug must be sold to
Medicare at no more than 88% of the average selling price. The
problem was created by an extra provision which said that
Medicare must also be offered at least as good a price as any
retailer. This provision would only work as its framers intended if
drug manufacturers could be relied upon to ignore the new
incentives created for them by the act. But why would drug
manufacturers ever sell a drug to a retailer at less than 88% of the
current average price if the consequence is that they must then sell
the drug at the same price to a huge customer like Medicare?
However, if no drugs are sold at less than 88% of the current
average, then the average price will be forced up!
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In 2006, the British Liberal Democrats proposed introducing
green taxes that would allow income tax to be reduced by a total of
$12 billion. This proposal failed not only to appreciate that people
change their behaviour in response to new taxes, but that the very
purpose of a green tax is to change behaviour!

Nobody would ever propose constructing an aeroplane or a bridge
without giving a great deal of thought to how the mechanism
would stand up to the stresses and strains it will face when built,
but the idea that one should give the same care and attention to
the design of social mechanisms is typically greeted with scorn. I
once provoked outright laughter when I suggested that some
money might be spent testing a major reform in a psychological
laboratory to see whether it would work before being put into
practice. Even the design of big-money auctions is still often left in
the hands of amateurs who know nothing whatever of the simple
ideas to be outlined in this chapter.

Judgement of Solomon

When confronted by two women disputing the motherhood of a
baby, King Solomon famously proposed that the baby be split in
two, so each claimant could have half. The false mother accepted
the judgement, but the true mother’s ‘bowels yearned upon her
son’ so that she begged for the baby go to her rival rather than
being hacked in two. Solomon then knew the true mother, and
awarded her the baby.

Actually, the biblical story doesn’t support Solomon’s proverbial
claim to wisdom particularly well. His scheme would have failed if
the false mother had been more strategically minded. So what
scheme would work better?

Solomon is the principal. The plaintiff and the defendant are the
agents. Trudy is the true mother, and Fanny is the false mother. To
keep things simple, we assume it to be common knowledge that
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Trudy would pay all she has in the world for her baby, but Fanny
will pay only some lesser amount.

Solomon’s aim is to award the baby to the true mother, but he
doesn’t know what type each agent is. He could ask them, but
Fanny has no incentive to tell the truth. So Solomon follows
Harsanyi’s methodology by imagining a chance move that either
casts Trudy in the role of the plaintiff and Fanny in the role of the
defendant, or Trudy in the role of the defendant and Fanny in the
role of the plaintiff.

Figure 27 shows the rules of a mechanism that achieves the
first-best outcome of awarding the baby to the true mother for
certain. The plaintiff moves first by saying whether or not she
claims to be the mother. If she denies being the mother, the baby is
given to the defendant. If she claims to be the mother, the
defendant must say whether or not she claims to be the mother.
If she denies being the mother, the baby is given to the plaintiff.

27. The Judgement of Solomon. The diagram on the right shows the
game from Solomon’s point of view when Trudy values the baby at
3 shekels, Fanny values the baby at 1 shekel, and Solomon sets a fine of
2 shekels
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If both women claim to be the mother, the baby is given to the
defendant, and both women are fined.

Solomon must use his famed wisdom in setting the incentives for
Fanny and Trudy. The fine must be higher than Fanny’s valuation
of the baby but lower than Trudy’s. The thickened lines in Figure
27 then show the result of applying backward induction. When the
actors use this subgame-perfect equilibrium, Trudy always gets
the baby, and no fine is paid.

Economic applications

The big successes of mechanism design are in auctions and
regulatory economics. The billions of dollars raised in telecom
auctions have attracted a lot of attention, but the regulatory
applications are probably of more significance in the long run.

The fat cats who get regulated squeal a great deal about the virtues
of the free market, but they know that the pleasant properties of
perfectly competitive markets only apply when there are large
numbers of small buyers and sellers. When there are only small
numbers of sellers, they always end up using their market power to
screw the consumer unless restrained by government regulation.

The free marketeers are right that no regulation is usually better
than the bad regulation with which we have mostly been saddled
in the past, but regulation doesn’t need to be bad. Better
regulation using the principles of mechanism design is already
making headway against the opposition of the various gurus
whose advice it makes redundant. However, I don’t have space to
talk seriously about regulatory economics here, and so the rest of
this chapter will be about auctions.

Willlam Vickrey

Auctioning is the branch of game theory in which most progress
has been made. It is also an area in which game theory has been
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used with spectacular success to solve applied problems. The
amount of money raised in telecom auctions designed by game
theorists is astronomical.

Once upon a time, governments used to organize what became
known as ‘beauty contests’ when allocating valuable public assets
to private companies. Each company would submit a mighty
document explaining why it should get the asset rather than one of
its rivals. A committee of officials would then decide whose
document they liked best. But the officials commonly had no idea
of the commercial value of the assets they were selling. Nor were
they told the truth by the contestants in the beauty contest. Why
would agents ever tell the truth to their principal unless it were to
their advantage? They need to be offered appropriate incentives
before they will part with the information the principal needs.
Auctions persuade agents to tell the truth is by making them put
their money where their mouths are.

William Vickrey is the hero of auction theory. He was advocating
the use of specially designed auctions for the sale of major public
assets 30 years before the idea became popular. The Federal
Communications Commission ignored his arguments until the
word finally reached Congress, which insisted that the next batch
of telecom frequencies be sold by auction. A design by a group of
game theorists led by Paul Milgrom then raised a total of $20
billion in revenue.

The team I led myself designed other telecom auctions in Britain,
Belgium, Denmark, Greece, Hong Kong, and Israel. The auction
in Britain raised $35 billion all by itself. After the collapse of the
NASDAQ index in 2001 and the consequent bursting of the hitech
bubble, there was a great deal of caterwauling as telecom
executives sought to blame their own failure to assess the market
properly on the game theorists who supposedly made them pay
more for their licences than they were worth. But who but an idiot
would bid more for something than they thought it was worth?
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I think all the brouhaha only served to underline how effective
game theorists can be when allowed to apply the discipline of
mechanism design on a large scale. The Nobel Committee
obviously thought the same thing and belatedly awarded Vickrey a
Nobel Prize, but he died three days after receiving the
announcement.

Kinds of auction

Auctions are nothing new. Herodotus describes the auctioning of
unwanted wives in ancient Babylon. Nor are big-money auctions a
novelty. In AD 193 the Pretorian Guard auctioned off the Roman
Empire to one Didius Julianus. Some of the kinds of auctions in
regular use are listed below.

English auctions

Sotheby’s uses this kind of auction to sell old masters. An
auctioneer invites oral bids. The bidding continues until nobody is
willing to bid any more. The auctioneer traditionally cries out,

‘Going, going, gone!’

28. Going, Going, Gone!
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If nobody interrupts with a new bid, he hammers his block, and
the object is sold to the buyer who bid last.

Dutch auctions

The auctioneer begins by announcing a high price, which is then
gradually lowered until a buyer calls a halt. The first buyer to do so
then acquires the object at the price outstanding when he or she
intervened.

Dutch auctions can be quick, and so are used to sell perishable
goods like fish or cut flowers. In Amsterdam’s flower auction, a
seller may fly cut flowers in from Zambia, and the buyer may ship
them out to sell them in Chicago all in a single day. However,
slow-motion Dutch auctions are sometimes operated by used
furniture stores that reduce the price of unsold items by 10%
each month.

First-price, sealed-bid auctions

This is the standard format for government tenders. Each
potential buyer privately writes his bid on a piece of paper and
seals it in an envelope. The seller commits herself to selling the
object to whoever makes the highest bid at the price he bid.

Vickrey auctions

In a Vickrey auction, the object is sold by the sealed-bid
mechanism to the highest bidder, but at the highest price bid by a
loser. This will be the second-highest price unless there is a tie for
first place, in which case the winner is chosen at random from the
highest bidders.

Milton Friedman led an irresponsible but successful campaign to
persuade the American government to change the auction format
used to sell Treasury Bonds to what financial gurus choose to call a
second-price auction, but he was mistaken in supposing that he
was advocating the appropriate generalization of a Vickrey auction
to the case when many identical objects are for sale. This is only
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one example of a distressing phenomenon. Even in those few cases
where game theorists know the answer to a problem, government
officials usually prefer the advice of false prophets with better
public relations.

Optimal auctions

Alice wants to sell her house, which is worth nothing to her if a
buyer can’t be found. The only potential buyers are Bob and Carol.
What auction design should Alice use?

Alice’s problem is similar to King Solomon’s. She doesn’t know
Bob and Carol’s valuations for her house. If she knew their
valuations, she would simply make a take-it-or-leave-it offer of
one penny less than the higher of the two valuations. It would then
be rational for the bidder with the higher valuation to accept,
because a profit of one penny is better than nothing. This analysis
depends heavily on Alice having the power to make an irrevocable
commitment to the rules of the Ultimatum Game. Mechanism
design doesn’t work at all if the agents don’t believe that the
principal will stick by the rules of the game she invents for them to
play.

Since Alice doesn’t know Bob and Carol’s valuations, she follows
Harsanyi’s methodology by modelling her uncertainty about their
valuations with the help of a chance move. In the simplest case,
this chance move assigns valuations to Bob and Carol
independently – so that nothing you may learn about one agent’s
valuation tells you anything new about the valuation of the other
agent. Where it is necessary to be specific, I shall assume that each
agent’s valuation for Alice’s splendid house is equally likely to be
anything between zero and 36 million dollars.

Most people are surprised to discover that all the auction designs
surveyed in the previous section are optimal for Alice if everybody
is trying to maximize their average profit in dollars. Alice should
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set a reserve price of 18 million dollars and then use whichever of
the designs takes her fancy, because they all yield the same average
profit of 15 million dollars.

Reserve prices

Notice that Bob won’t bid at all half the time, because his
valuation will be less than Alice’s reserve price. Since the same is
true of Carol, Alice won’t sell her house at all one time in every
four. If this happens, she mustn’t cheat on her own rules by
auctioning the house again with a lower reserve price – unless she
doesn’t care whether the agents will believe her in the future when
she acts as a principal again!

I have given advice to many governments on designing big-money
auctions, but I have never had any success in persuading the
responsible officials to set as high a reserve price as I wished. Nor
have I ever had any confidence that the officials understood that
they mustn’t put the object for sale back on the market
immediately if it didn’t reach its reserve price. But my efforts on
this front aren’t entirely wasted, since they provide an excuse for
looking only at the case of a zero reserve price in what follows. All
the auction designs we have considered so far raise the same
revenue on average whatever the reserve price, but it is easiest to
explain why in the case when all the potential buyers can be
counted on to make a bid.

Revenue equivalence

In a symmetric Nash equilibrium, agents with higher valuations
will make higher bids in all of the auctions we have considered. So
the agent with the higher valuation will win. The probability of an
agent with a given valuation winning the auction is therefore the
same for all our designs.

What does the agent expect to pay on average? In each of our
auctions, the answer turns out to be half the agent’s valuation.
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It follows that Alice’s average revenue must be the same for each
design. This average revenue turns out to be only 12 million
dollars, but this is the best Alice can hope for if Bob and Carol bid
rationally and she sets a reserve price of zero.

Why should the winner expect to pay only half his or her
valuation? The case of an English auction is easiest. It is obvious
that Bob and Carol should each keep bidding until the going price
reaches their valuation, after which they should shut up. So the
bidding will stop when the going price reaches the lower of the
agents’ valuations. The winner will therefore pay the loser’s
valuation. Since the loser’s valuation is equally likely to be
anything less than the winner’s valuation, its average value is half
the winner’s valuation.

It now becomes possible to see why a Vickrey auction is essentially
the same as an English auction. If Bob and Carol submit their true
valuations to Alice and she sells her house to the highest bidder at
a price equal to second-highest bid, then her average profit will be
exactly the same as in an English auction. But why should Alice
expect Bob and Carol to bid their true valuations?

The answer is that this strategy dominates all the agents’ other
alternatives. If the opposing agent has bid less than your
valuation, you make sure of winning without affecting the price
you pay by bidding your valuation. If the other agent has bid more
than your valuation, you don’t want to win and so you might as
well bid your valuation.

What about a Dutch auction? Bob and Carol could write the price
at which they plan to stop a Dutch auction on a piece of paper and
leave Alice to implement the strategy on their behalf. A Dutch
auction is therefore essentially the same as a first-price sealed-bid
auction. So if we can work out what price Bob and Carol should
seal in their envelopes in the latter auction, we will also know
when they should plan to stop a Dutch auction.
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Shading your bid

What bid should you seal in your envelope in a first-price
sealed-bid auction? You certainly won’t bid your true valuation,
because your profit would then be zero if you won. You need to
shade your bid down. But by how much? I already gave the secret
away when explaining why all our auction designs are revenue
equivalent. Bob and Carol should each bid only half their
valuations.

This fact is usually proved by calculus but I plan to explain it using
landscape gardening. What shape should a garden be if you want
to enclose the maximum area with a fixed amount of fence? The
answer is obviously a circle. If the garden has to be rectangular,
the answer is a square.

Returning to the problem of finding a symmetric Nash
equilibrium for a first-price, sealed-bid auction, imagine it to be
common knowledge that Carol will make a bid proportional to her
valuation. Bob’s probability of winning will then be proportional
to whatever bid he makes. He wants to maximize his average
profit, which is the product of his profit if he wins and his
probability of winning. This product is proportional to the area of
a rectangular garden whose length is his profit if he wins and
whose width is his bid.

Since his profit if he wins is the difference between his valuation
and his bid, the length of the garden fence is proportional to his
valuation. The fence therefore has the same length whatever bid
he makes. So finding Bob’s best reply reduces to deciding which
rectangular garden has the largest area when enclosed by a fence
of fixed length. Since the answer is a square, Bob best reply is
found by setting his bid equal to the difference between his
valuation and his bid – which makes his optimal bid equal to
half his valuation. His bid will then be proportional to his
valuation, and so Carol’s optimal bid will also be equal to half her
valuation.
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All-pay auctions

Instructors in game theory courses are fond of auctioning a dollar
according to the following rules. The bidding is as in an English
auction, with the highest bidder getting the dollar, but everyone
pays their highest bid including those who don’t win the dollar.
Watching the expression on students’ faces when the bidding
reaches one dollar, and the losers realize that it is now worth their
while to bidmore than one dollar can be quite entertaining!

Bribing corrupt politicians or judges is rather like an all-pay,
sealed-bid auction. Everyone pays, but only one bribe can be
successful. If there is honour among thieves, it will be largest bribe
that carries the day.

All-pay auctions are mentioned here only to make the point that
the revenue equivalence result applies very generally. The agents
will obviously shade their bids much more in an all-pay, sealed-bid
auction than in a first-price, sealed-bid auction, but Alice’s average
revenue will still be 12 million dollars.

Bespoke auctions

Economic correspondents of newspapers sometimes quote
revenue equivalence results when wrongly arguing that it never
matters what kind of auction the seller uses. But the result goes
away if Bob and Carol are budget constrained or risk averse. Alice
then gets more in a Dutch auction than an English auction. Nor
does it hold if Bob and Carol’s valuations cease to be independent.
Alice will then expect more in an English auction than a Dutch
auction.

When a big-money auction is to be run, it is therefore of
paramount importance that its rules be tailored to the
circumstances. For example, if Alice somehow knows that the only
amounts at which it is possible for Bob and Carol to value her
house are 27 million or 36 million dollars, then she shouldn’t run
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any of the auctions considered so far. If the two possibilities are
equally likely, she should run a sealed-bid auction in which the
winner pays the average of the two bids!

Winner’s curse

Agents with private values know their valuations before the
auction begins, and nothing they might learn during the auction
will lead them to change their valuations. All the auctions we have
looked at up to now have been treated as private-value auctions.
At the opposite end of the spectrum are common-value auctions,
in which it is common knowledge that the value of the object
being sold is the same for all the prospective buyers.

For example, when licences to drill for oil in undersea tracts are
auctioned, the amount of oil in a tract is the same for everybody,
but the buyers’ estimates of how much oil is likely to be in a tract
will depend on their differing geological surveys. Such surveys
aren’t only expensive, but notoriously unreliable. Some prospective
buyers will therefore receive optimistic surveys, and others will
receive pessimistic surveys. So who will win the auction?

If Bob treats his survey’s estimate of the value of the tract as a
private value, then he will win whenever his survey is the most
optimistic. But when Bob realizes that his winning the auction
implies that all the other surveys are more pessimistic than his, he
will curse his bad luck at winning! If he had known at the outset
that all the other surveys were more pessimistic than his, he
wouldn’t have bid so high.

As with the all-pay auction, game theory instructors like to catch
their students out by trapping them with a common-value auction.
A glass jar filled with coins and rumpled bills of various
denominations is auctioned off to the highest bidder, who usually
falls prey to the winner’s curse and so makes a substantial loss.
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Wallet Game

To avoid the winner’s curse, bidders must take account of the
information that the bids of their rivals convey about how much
they think the object for sale is worth. The Wallet Game is a toy
example. Alice confiscates Bob and Carol’s wallets, and then uses
an English auction to sell their combined contents back to them.

It is a Nash equilibrium if both agents plan to keep bidding until
the going price reaches twice the money in their own wallets. If
Carol bids this way, then Bob will be cursed if he wins by bidding
more than twice the money in his own wallet. He then knows that
the amount of money in his own wallet is less than half the final
price. He also knows that the amount of money in Carol’s wallet is
less than half the final price, because she stopped bidding. So the
total amount of money Bob has won must be less than the price he
paid for it.
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Chapter 8

Evolutionary biology

Biologists have a huge advantage over social scientists in applying
game theory, because they have so much more data. Natural
selection has generated a vast variety of different species, some of
which are so weird and wonderful that they seem to defy rational
explanation. But what could be more satisfying than finally to
learn why the unusual genetics of theHymenoptera explain the
unequal sex ratio in certain species of bees? Or why two very
different variants of the bluegill sunfish succeed in coexisting
together in the same lake? To deny evolution in the face of such
examples seems to me like emulating the theologian who refused
to look through Galileo’s telescope.

Even more remarkable is the fact that even the crudest of toy
games will sometimes suffice to model some animal behaviour
successfully. Nobody really believes, for example, that
reproduction is sexless among birds, or that the evolutionary
process is deterministic. But, as in physics, the models that result
from making such heroic simplifications sometimes fit the data
remarkably well.

Evolutionary game theory

Herbert Spencer summarized Darwin’s theory of evolution as the
survival of the fittest. When asked why the animals of some
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species behave as they do, we therefore look for an answer that
explains why alternative behavioural traits were less fit. But how is
fitness to be defined?

Bill Hamilton’s definition makes it inevitable that modelling
animal behaviour will sometimes reduce to finding the Nash
equilibria of games. He took the fitness of a behavioural trait to be
the average number of extra children that carry that trait into the
next generation as a result of the trait being used in the current
generation. With this definition, behavioural traits can be
identified with strategies, and fitness with utility.

When animals compete, we can then imagine that Chance
occasionally picks two or more individuals from the relevant
populations to play a game. A famous example in ecology is the
predator-prey game that results in the numbers of Canadian
lynxes and hares cycling indefinitely. However, this chapter will
focus on games played within a single species that have stable
outcomes. For example, what determines how long a male dung fly
will wait at a particular cow pat for a female when seeking to
mate? Since the strategic problem is the same for all dung flies, we
can then confine our attention to symmetric Nash equilibria of
symmetric games.

A symmetric game looks exactly the same to all its players. In a
symmetric equilibrium, all players use the same strategy. A variant
of Nash’s theorem shows that all finite, symmetric games have at
least one symmetric Nash equilibrium.

Replicators

Unfortunately, the philosophical waters have been muddied by a
controversy over who or what should be treated as a player in an
evolutionary game. A whole species? An individual animal? A
package of genetic material? Or an individual gene? The title of
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Richard Dawkins’ Selfish Gene seems to tell us where he stands on
this issue, but he actually takes the more sophisticated view that
anything which replicates itself may be regarded as the
fundamental unit in an evolutionary game.

Like the old lady I once heard giving Dawkins a hard time for
failing to see that genes are just molecules and so can’t have free
will, people often find it paradoxical that game theory could be
successfully applied in evolutionary biology. How can an insect be
a player in a game? Insects can’t reason. Their behaviour is largely
instinctive. They just do what they are programmed to do.

The solution to the paradox is that the players in the game needn’t
be taken to be the animals under study. If the behaviour being
investigated is largely instinctive, then it is coded for in the
animal’s genes. One may think of the genes as part of the hardware
of a natural computer: the part where the computer’s programs
are stored. Some of the programs control the animal’s behaviour.

An important property of computer programs is that they can be
copied from one computer to another. Computer viruses copy
themselves from one computer to another. They are
self-replicating. The programs imprinted on an animal’s genes are
also self-replicating. But their replication is immensely
complicated compared with the replication of a computer virus.
Nature not only has to copy programs from one natural computer
to another, she has to create a new natural computer to which the
programs may be copied. Crick and Watson’s discovery of how
Nature works this trick using the device of the double helix is one
of the great scientific adventure stories. But its thrills will have to
be enjoyed elsewhere. All that is important here is that we
understand that something exists that does two things:

� It replicates itself.
� It determines strategic behaviour in a game.
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Whenever we find something in a model on which we can hang
these two properties, it will be called a replicator.

Genes can certainly be replicators. Critics sometimes complain
that a mutation in a single gene is unlikely to have much effect,
but even the slightest modification in a behavioural trait can be
significant when fitness is averaged out over a long enough time
span. Packages of genes that tend to be replicated together also
count as replicators. In a parthogenetic species like the mason
beetle, a mother transmits its entire genetic coding to its children,
in which case one might as well say that each individual type of
animal is a replicator.

To survive, replicators need hosts in whose genes they are
imprinted. Since we have defined the fitness of a host to be a
measure of how frequently it reproduces its genes, it becomes
almost a tautology that replicators that confer high fitness on their
hosts will come to control a larger share of hosts than those that
confer low fitness. If the environment will only support a
restricted number of hosts, the replicator conferring low fitness on
its hosts may eventually die out altogether. The fittest replicator
will then have survived.

If Alice is watching the situation evolve, she might try to make
sense of what she sees by attributing a goal or purpose to whatever
mechanism generates replicators: that of maximizing the fitness of
their hosts. If natural selection operates for long enough in a
stable environment, only those replicators that are good at
maximizing the fitness of their hosts will survive. To Alice, it will
therefore seem as though something were consciously choosing
replicators to maximize fitness. We call this imaginary something a
player of the game.

For example, when the replicators are taken to be variants of a
single gene, we can imagine the player sitting at the locus on the
chromosome where that particular gene operates. Careful
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biologists who like to think of genes themselves as players use the
term allele for the possible forms a gene may take. However, it is
common to blurr the distinction between a player and a replicator
in much the same way that the distinction between a player and a
type often gets blurred in the theory of incomplete information
(see Incomplete information Chapter 6).

Evolutionary stability

For evolution to work, there must be some variation in a
population. The shuffling of genes in sexual reproduction is one
source of variation. Geographical migration and mutation are
others. When can we expect a population to settle down in the face
of such random variation? One approach is to look for an
asymptotic attractor – a population of replicators that is stable in
the face of any small perturbation.

The simplest possible model of a biological evolutionary process is
called the replicator dynamics. Figure 14 on P. 50 shows how it
works in a particular game when the players are drawn from two
different populations that evolve separately. In this chapter, the
corresponding diagrams are much simpler, because the focus will
be on symmetric games in which the players are drawn from a
single population.

The replicator dynamics assumes that the proportion of a
population hosting a particular replicator increases at a rate
proportional to two factors:

� The fraction of the population currently hosting the replicator.
� The difference between the current fitness of the replicator’s hosts

and the average fitness of all the hosts in the population.

The first requirement simply recognizes that the rate of growth of
a replicator is constrained by the number of parents available to
transmit the replicator to the next generation. The second
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requirement recognizes that evolution can only take account of a
replicator’s fitness relative to the fitness of the population as a
whole.

If all the replicators to be considered are present when the
replicator dynamics get started, then the system can only converge
on a symmetric Nash equilibrium – if it converges on anything at
all.

Evolutionarily stable strategies

The idea of an evolutionarily stable strategy or ESS begins with
George Price, who submitted a 60-page essay on evolutionary
mathematics to the journal Nature, which a more worldly author
would have known publishes only short articles. Fortunately, his
referee was John Maynard Smith. Together they wrote a paper
which distilled Price’s essential wisdom into something readable.
Maynard Smith went on to write Evolution and the Theory of
Games, which put evolutionary game theory on the map. George
Price eventually committed suicide, reportedly because he found it
increasingly difficult to reconcile his fundamental contributions to
evolutionary biology with his religious convictions.

When the players are drawn from different populations, the
considerations to which we are about to appeal lead to nothing
more exotic than a strict Nash equilibrium (in which there are no
alternative best replies to the equilibrium strategies). But
evolutionarily stable strategies apply when the players are drawn
from the same population to play a symmetric game. The defining
properties are:

� An ESS must be a best reply to itself.
� If an ESS isn’t the only best reply to itself, it must be a better reply

to any alternative than the alternative is to itself.

The first requirement says that a pair of evolutionarily stable
strategies must be a refinement of the notion of a symmetric Nash
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equilibrium. But if this were our only requirement, what would
prevent a destabilizing invasion of the population by an alternative
best reply? The second requirement provides the necessary
evolutionary pressure against such an invasion by asking that an
ESS be more fit than an invader immediately after an invasion.

Any ESS in a symmetric game is necessarily an asymptotic
attractor of the replicator dynamics. In its turn, an asymptotic
attractor is necessarily a symmetric Nash equilibrium. We
therefore have a necessary condition and a sufficient condition for
evolutionary stability. Both conditions apply to a wider class of
evolutionary processes than just the replicator dynamics, but some
care is necessary when applying the ESS concept even with the
replicator dynamics. For example, the trajectories of the replicator
dynamics in Rock-Scissors-Paper go round in circles, and the
game has no ESS at all (see Finding maximin strategies,
Chapter 2). Worse still, other 3 × 3 symmetric games exist which
have isolated asymptotic attractors that aren’t ESS. Only in
symmetric games with just two pure strategies is the ESS concept
entirely safe.

However, carping about the inadequacies of evolutionary
modelling concepts in the abstract isn’t very productive. The real
question is: how useful are they in making sense of real biological
examples?

Hawk-Dove Game

Two birds drawn from the same species occasionally contest some
valuable resource. The two replicators in the population make
their hosts either passive or aggressive in such situations. A passive
bird surrenders the entire resource to an aggressive bird. Two
passive birds share the resource equally. Two aggressive birds fight.

Maynard Smith referred to passive birds as doves and aggressive
birds as hawks, for which reason the game is called the
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Hawk-Dove Game – but don’t be misled into supposing that the
birds are intended as representatives of different populations that
evolve separately. The environment is intended to be entirely
symmetric.

Prisoner’s Dilemma

If possession of the resource enhances a bird’s fitness by four utils
and getting into a fight by only one util, then the Hawk-Dove
Game reduces to the version of the Prisoner’s Dilemma shown in
Figure 29. Recall that the only Nash equilibrium is for both
players to use hawk (see Chapter 1). Since this strategy is strictly
dominant, it is also an evolutionarily stable strategy.

The birds playing the Hawk-Dove Game are drawn from a single
population, and so the replicator dynamics for the Prisoner’s
Dilemma in Figure 29 on P. 126 are one-dimensional (rather than
two-dimensional as in previous examples). The arrow shows that
there is a unique asymptotic attractor in which the population
consists entirely of hawks. If we were to perturb this population by
throwing in a positive fraction of dovelike mutants, they would
eventually all be eliminated. In fact, the basin of attraction
consists of all population states other than that in which the whole
population consists of doves. The appearance of even a tiny
fraction of hawk mutants therefore dooms the doves to eventual
extinction.

Group selection fallacy

The ardor with which game theorists deny the various fallacies
claiming that cooperation is rational in the Prisoner’s Dilemma
pales into insignificance when compared with the almost demonic
ferocity with which evolutionary biologists denounce the group
selection fallacy.

According to the group selection fallacy, evolution favours
mutations that enhance the fitness of the species rather than the
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fitness of the mutated gene itself. A population playing dove in the
Prisoner’s Dilemma would then be invulnerable to invasion by a
mutant hawk because any fraction of hawks in the population
would reduce the total fitness of the population. The fallacy lies in
misplacing the relevant replicator at the level of the species. It is,
after all, at the molecular level that replication takes place
physically when the double helix divides. It is therefore right to
confine attention to the unique ESS, which is hawk.

Charles Darwin knew nothing of modern genetics and so
occasionally fell into a number of errors, of which the group
selection fallacy was one. However, it is the biologist Vero
Wynne-Edwards who is the luckless target of modern critics. He
suggested, for example, that starlings gather in large numbers at
nightfall in order to estimate their numbers with a view to
controlling their population size. George Williams’s critique of his
group selection arguments was very influential, leading to a
literature explosion of which Dawkins’s Selfish Gene is just one
example.

The sex ratio problem is a nice example of the failure of the group
selection fallacy. What sex ratio would favour a new species? The
answer is a few males and many females. So why do we have
roughly equal numbers of boys and girls? Because a boy born into
a population consisting mostly of girls will be fitter than a girl, and
a girl born into a population consisting mostly of boys will be fitter
than a boy. How is an equilibrium achieved in such situations?
That is our next topic.

Chicken

The payoff values that identify the Hawk-Dove Game with the
Prisoner’s Dilemma are unrealistic, because even a slight injury is
likely to be a serious handicap. If we assign a negative utility to a
bird that gets into a fight by subtracting two more utils from its
payoff, we are led to the version of Chicken of Figure 29.
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29. Replicator dynamics in the Hawk-Dove Game. For a single
population, the trajectories can be shown using one-dimensional
diagrams. A similar diagram for the Stag-Hunt Game would show the
arrows pointing away from its mixed equilibrium

Chicken has three Nash equilibria: two pure and one mixed. The
mixed equilibrium requires that each player use dove one-third of
the time and hawk two-thirds of the time. In contrast to Getting to
equilibrium in Chapter 2, we reject the pure equilibria because
they are asymmetric – only the symmetric mixed equilibrium is of
interest here.

Must we then envisage birds as throwing dice? Not in the
Hawk-Dove Game. To see why, imagine that one-third of the
population are doves and two-thirds are hawks. When Chance
selects two birds at random to play Chicken from this polymorphic
population, it will seem to both players that their opponent is
playing the mixed equilibrium strategy. Since players are
indifferent between the pure strategies they use in a mixed
equilibrium (see Chapter 2), both hawks and doves will therefore
be equally fit. So no individual bird need randomize at all to
sustain the equilibrium.
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Maynard Smith observed that the mixed population state not
only corresponds to a symmetric Nash equilibrium, it also
corresponds to an evolutionarily stable strategy. The replicator
dynamics shown in Figure 29 confirm that a population with twice
as many hawks as doves is an asymptotic attractor. It is good to be
a hawk when there are many doves, and good to be a dove when
there are many hawks. The two effects cancel out at the mixed
Nash equilibrium, where a player is indifferent between choosing
dove and hawk.

At one time the survival of two variants of the same animal in the
same environment was thought to be a mystery. Surely one type
must be just a little less fit than the other, and so be driven to
extinction in the long run? But the fitness of a variant varies with
its frequency in such situations.

Bluegill sunfish

The bluegill sunfish (Leoponis macrochirus) is a popular target for
anglers in North American lakes. The fish enjoy a synchronized
mating season in which males stake out nests on the lake floor.
Females lay their eggs in whatever nest takes their fancy. The eggs
are promptly fertilized by the resident male who then stoutly
guards the resulting brood.

Guardian males share their lakes with another type of male
commonly called a sneaker. Sneakers mature after two years,
whereas guardians take seven years. Sneakers are unable to
establish and guard a nest, since they are little more than
self-propelled sexual organs. When a female lays her eggs in a
nest, they rush out from their hiding places and try to fertilize her
eggs before the guardian.

In a profligate display of exuberence, Nature has also gifted us
with an alternative sneaker that disguises itself as a female, and an
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alternative guardian that establishes its nest at a distance from the
closely packed nests established by regular guardians.

The theory says that the numbers of each type of male will adjust
to equalize their fitness – a conclusion that is reassuringly in line
with the data.

Playing the field

Animals don’t need to randomize when they compete in pairs,
but they sometimes behave as though they do when ‘playing the
field’.

Male dung flies (Scatophaga stercoraria) congregate at cow pats
hoping to mate with females attracted by the scent. How long
should a male wait before seeking a fresh cow pat (which takes an
average of four minutes)? Game theory tells us to look for
symmetric Nash equilibria. In the simplest model, each male will
use a mixed strategy in which his waiting time is exponentially
distributed. This means that his probability of leaving now is
always twice what it would be if he waited some fixed time period.
But how long is this period?

If the theory is right, the period should adjust until a dung fly’s
mating success is the same no matter how long he waits. As with
sunfish, the data are very supportive of this hypothesis, although I
dare say a dung fly would be no more receptive than a company
executive to the idea that he was actively randomizing (see Does
randomizing make sense, Chapter 2).

Kin selection

The animal kingdom overflows with examples of cooperation
within the family. African hunting dogs regurgitate food to help
out a hungry pack brother. Marmosets and tamarins help to care
for their nephews and nieces in extended families. Male birds of
some species do the same when their chances of being able to
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reproduce in the current year are low. Aphids give up their lives
defending their siblings from attack. Musk oxen form a
defensive ring around the weaker members of the family when
attacked by wolves. Why is kinship so important in the animal
kingdom?

Hamilton’s rule

Bill Hamilton’s Narrow Roads of Geneland is an account of the life
and work of another oddball genius. He recently died a typically
adventurous death on a field trip to Brazil. Hamilton deserves
most of the credit for introducing game theory into biology,
although I doubt that he ever heard of John Nash during the long
years he strove, alone and unrecognized, to create a whole new
field of research. One of his many achievements was to formulate
the evolutionary explanation of cooperation within the family
nowadays known as kin selection.

His point was famously anticipated in a semi-serious joke of J. B.
S. Haldane. When asked whether he would give his life for another,
he replied that the sacrifice would only be worthwhile if it saved
two brothers or eight cousins! Haldane’s joke is only funny if you
know that your degree of relationship to a full brother is one-half,
and your degree of relationship to a full cousin is one-eighth.

It is sometimes said that the degree of relationship can’t really
matter, because human beings share nearly all their genes anyway.
But this is to miss the point that we are never concerned with
genes that are always present in the human body, but only with a
particular piece of behaviour that will be modified or left alone
according to whether a recently mutated gene is present or
absent.

Your degree of relationship to a relative is the probability that a
recently mutated gene in your body is also in your relative’s body.
To see that your degree of relationship to a cousin is one-eighth,
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imagine that your cousin is the daughter of your mother’s sister.
The probability that a mutant gene in your body came from your
mother rather than your father is one-half. If it came from your
mother, the probability it is also in the body of your aunt is
one-half. If it is in the body of your aunt, the probability she
passed it to your cousin is one-half. Multiplying these three halves
together, we get one-eighth.

What counts in calculating the fitness of a gene is the average
number of times it gets replicated in the next generation. But it
doesn’t matter which of two or more identical versions of a gene is
copied. A copy made from a gene in my sister’s body is just as good
as a copy made from an identical gene in my own body. When we
figure out the fitness of a gene in my body, we therefore have to
take account, not only of the effect of my behaviour on my own
reproductive success, but of its effect on the reproductive success
of my relatives. Hamilton called the outcome of such a calculation
an inclusive fitness.

If my sister is my only relative, then a mutant gene in my body
shouldn’t simply count the extra number of children I will have on
average as a consequence of its modifying my behaviour. It should
use Hamilton’s rule, which requires adding in the extra number of
children that my sister will have – weighted by one-half, because
this is the probability that the mutant gene is also in her body. For
example, if I expect to have one child less as a consequence of
changing my behaviour, and my sister expects to have four
children more, then Hamilton’s rule says that the inclusive fitness
of my new strategy is −1 + 1

2 × 4 = 1. My personal loss is therefore
outweighed by my sister’s gain.

The results of replacing individual fitnesses in a game by inclusive
fitnesses can be dramatic, as with the Prisoner’s Dilemma in
Figure 30. When nestlings compete for food with their siblings,
their behaviour is largely genetically programmed. If the nestlings
were identical twins, both players could therefore count on their

130



Evo
lu
tio

n
ary

b
io
lo
g
y

30. Relatives play the Prisoner’s Dilemma. Hamilton’s rule has been
used to convert individual fitnesses in the Prisoner’s Dilemma of
Figure 29 into inclusive fitnesses. Identical twins will now cooperate,
but wemust expect mixed behaviour from siblings

opponent choosing exactly the same strategy as themselves. The
situation then reduces to a one-player game.

The two-player games of Figure 30 are more suitable for
modelling human behaviour in cases when the players’ behaviour
is learned rather than genetically programmed. When Alice and
Bob are identical twins, we are led to a game that I call the
Prisoner’s Delight because dove is now a dominant strategy. When
they are brother and sister, we are led to a form of Chicken, in
which we should expect both dovelike and hawkish behaviour to
survive together. (It would take us too far afield to examine the
more interesting case of siblings whose behaviour is genetically
determined.)

Kinship is especially important in primitive human societies. In
societies that tolerate promiscuity, for example, some of the
functions undertaken by a father in our own society are taken on
by a child’s maternal uncle – the underlying reason being that
everybody knows his degree of relationship to the child is
one-fourth, whereas nobody can be sure who the child’s real father
may be. Hamilton’s rule provides an evolutionary explanation of
such phenomena by quantifying the extent to which we should
expect blood to be thicker than water.
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Social insects

A species is eusocial if it lives in colonies with overlapping
generations in which one or a few individuals produce all the
offspring, and the rest serve as sterile helpers. Eusociality is rare
except among theHymenoptera – the order of insects that
includes ants, bees, and wasps. It used to be said that true
eusociality has evolved independently at least 12 times in the
Hymenoptera, but only twice elsewhere – the exceptional cases
being the termites of the order Isoptera and the naked mole-rats
of the order Rodentia. Later research has found other eusoscial
species, the most interesting of which is a shrimp (Decapoda)
that colonizes sponges on coral reefs. But the frequency of
eusociality in theHymenoptera remains a puzzle demanding an
explanation.

Why did evolution generate casts of sterile workers? Why do they
work tirelessly for the sake of others? Why is this phenomenon
common among theHymenoptera and rare elsewhere?

At one level, the puzzle is easy. Groups working together are
usually more productive than individuals acting separately. In a
beehive or an anthill, very large numbers of sterile workers
specialize in protecting and caring for the young, while the queen
specializes in being an egg-laying machine. As a consequence, the
total number of young produced is immensely larger than if pairs
of bees or ants brought up separate families by themselves.

It is clear why the queen benefits, but what’s in it for the workers?
Each fertile child the queen produces is related to the workers.
They are the workers’ brothers and sisters. A mutant gene that
expresses itself in the body of a worker therefore has a lot of
relatives to count when it computes its inclusive fitness. All the
queen’s fertile children – weighted by their degree of relationship
to a worker – must be counted when calculating the benefit to a
worker of striving hard in support of the queen. The productivity

132



Evo
lu
tio

n
ary

b
io
lo
g
y

of a beehive or an anthill then ensures that the balance comes
down very firmly on the side of eusociality.

All this would be equally true of the human species if we had a
sterile worker cast, but we traditionally bring up our children in
extended families rather than biological factories. So why didn’t
evolution take us down the same road as theHymenoptera?

Bill Hamilton’s answer to this question depends on the fact that
theHymenoptera are haplodiploid, which means that unfertilized
eggs grow into haploid males and fertilized eggs grow into diploid
females. In a haploid species, each locus on a chromosome hosts
just one gene. Humans are diploid, with each locus hosting two
genes, one from the mother and one from the father. This is why
the degree of relationship between human sisters is one-half, since
a child gets one gene from each parent at every locus, and the gene
it gets from each parent is equally likely to be either of the two
genes the parent carries at that locus. By contrast, the degree of
relationship between sisters in theHymenoptera is three-quarters,
because each locus on their chromosomes gets the same gene from
their father, and a randomly chosen gene from the pair carried at
that locus by their mother.

Workers therefore have a stronger motivation to help their fertile
sisters than humans would have in the same situation. But this
isn’t the end of the story.

Robert Trivers pointed out that the degree of relationship between
genetically female workers and their brothers, the drones, is only
one-fourth. If the sex ratio among theHymenoptera were 50 : 50,
then the average degree of relationship between a sterile worker
and a fertile sibling would therefore only be the average of
three-quarters and one-quarter, which is one-half – the same as in
our own species. However, in some species among the
Hymenoptera, the sex ratio is about 75 : 25 in favour of fertile
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females as opposed to fertile males. How come? The answer is not
only of interest in itself, but it also serves to complete Hamilton’s
explanation of why eusociality has evolved so often in the
Hymenoptera.

In theHymenoptera, it is usually the genes expressed in the
workers that determine the sex ratio, because it is the workers who
rear the young. The sex ratio must therefore make a worker
indifferent between raising a fertile male or a fertile female infant.
This happens only when the sex ratio is 75 : 25, because the payoff
to a mutant gene expressed in the body of a worker is then 3

4 × 1
4

from producing a male and 1
4 × 3

4 from producing a female. Since
these payoffs are equal, a mixed equilibrium can survive in which
females are born with probability three-quarters and males with
probability one-quarter.

With this sex ratio, the average degree of relationship a sterile
worker has with a fertile brother or sister is 3

4 × 3
4 + 1

4 × 1
4 ,

which is five-eighths. If the worker were human, the degree of
relationship would be one-half. Human workers would
therefore have to work harder on behalf of a human queen in
order to derive the same benefit as a worker in an anthill or a
beehive.

It should be emphasized that the details of this overly simple story
are controversial among biologists. Even those species which come
closest to fitting the story deviate in idiosyncratic ways. But I think
that the fact that game theory allows evolutionary biologists to
explain sex ratios in species where these aren’t symmetric is one of
the more convincing demonstrations that we must be doing
something right.

Of course, many mysteries remain. Why are theHymenoptera
haplodiploid? How come only some species in the order are
eusocial? What about colonies with multiple queens? What of
Pachycondyla villosa, in which species unrelated queens
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apparently found colonies together? What of the many puzzles
posed by termites? Creationists seize on such admissions of
ignorance as an excuse to debunk evolutionary science, but I think
their criticisms simply reveal a failure to understand how science
works.

Evolution of cooperation

We already know that cooperation can be sustained among
animals that aren’t related by the mechanism that Bob Trivers
called reciprocal altruism. A wonderful example is provided by the
vampire bat (Desmodus rotundis).

Vampire bats roost together in caves during the day. At night they
seek an animal from which to suck blood. Some 8% are
unsuccessful, which is a big problem for bats, who need to feed
every 60 hours or so. For this reason, the evolutionary pressure
towards sharing is very strong. Gerald Wilkinson discovered that
vampire bats share blood on a reciprocal basis with roostmates
who aren’t always relatives. In brief, a bat is more likely to

31. Vampire bat
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regurgitate blood for a begging roostmate, if the roostmate has
shared blood with it in the past.

How does such cooperation get off the ground? Axelrod has
muddied the waters by claiming to have shown that TIT-FOR-TAT
is an ESS in the indefinitely repeated Prisoner’s Dilemma.
Although Maynard Smith mistakenly endorsed the claim, it
obviously isn’t true. A population of TIT-FOR-TATs can be invaded
by the strategy that always plays dove. Such a mutant won’t
displace TIT-FOR-TAT, but nor will it be expelled.

No pure strategy can be an ESS in the indefinitely repeated
Prisoner’s Dilemma: a mutation that changes the strategy at an
unreached subgame won’t even be detected, let alone driven out.
The ESS concept needs to be widened to be useful in such a
setting, so that whole sets of strategies through which a population
may drift are regarded as evolutionarily stable aggregates. For
example, the set N in both Figure 14 and Figure 32 is a kind of
aggregate asymptotic attractor within which the system is free to
drift. (There needn’t be a trajectory leading away from N, as in
both these cases.)

Hawk-Dove-Retaliator Game

The problem is already apparent in the Hawk-Dove-Retaliator
Game with which Maynard Smith and Price originally explored
the evolution of cooperation. A retaliator plays like a hawk against
a hawk, and like a dove against a dove. The retaliate strategy is
weakly dominated, and so the game has a symmetric Nash
equilibrium in which retaliate is not played at all. As in the
Hawk-Dove game, dove is played with probability 1/3 and hawk
with probability 2/3. In the upper triangle of Figure 32, this mixed
equilibrium is marked with the letter M. There are also an infinity
of Nash equilibria in which hawk is not played at all, marked in
Figure 32 with the letter N. These require that retaliate is played
with probability at least 3/5.
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32. Hawk-Dove-Retaliator Game. The upper triangle shows the
replicator dynamics in the pure game. A population mix is thought of
as being distributed at the three corners of the triangle. The point that
represents it is located at the centre of gravity of this distribution. The
lower triangle shows the replicator dynamics when retaliators have a
small advantage over doves, and hawks have a small advantage over
retaliators

The upper triangle shows the replicator dynamics for the
Hawk-Dove-Retaliator Game. The shaded set is the basin of
attraction for the set N. Maynard Smith and Price ignore this set
because only M is an ESS. However, if the system found its way
into N, its only chance of escaping is if a new hawkmutation
appears while it is close to Q. But this rare event might be delayed
for a very long time. There have, in fact, been enormously long
perods of stasis in the evolution of many species that might be
attributed to this cause.

The lower triangle of Figure 32 shows the replicator dynamics for
a modified version of the Hawk-Dove-Replicator Game in which a
retaliator is realistically assumed to do a little better against a dove
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and a little worse against a hawk. This game has three symmetric
Nash equilibria. There is an analogue of the mixed equilibrium
M of the Hawk-Dove Game; a pure equilibrium R in which only
retaliate gets played; and an equilibrium P in which all three
strategies are played with positive probability. The equilibria
M and R correspond to ESS strategies.

The basin of attraction of R is shaded in Figure 32. Since this is a
large set, we have a toy model in which it makes sense to apply the
ESS concept, and which offers the beginnings of an explanation of
the evolution of cooperation. Maynard Smith and Price expand
the model by introducing a bullying type who displays like a
retaliator but backs down when challenged. The bullies displace
doves, but otherwise nothing much changes.

However, the most interesting application of the
Hawk-Dove-Replicator Game is to the case of local interaction. In
real life, animals mostly play games with their geographical
neighbours. Chance might therefore easily fix it so that a mutant
retaliator becomes numerous in a small neighbourhood. The
Hawk-Dove-Replicator Game then tells us that the other
strategies will gradually be extinguished in that neighbourhood.
But then the same will happen in overlapping neighbourhoods
until the whole environment is taken over by retaliators.

This seems to me the most convincing toy explanation of the
evolution of cooperation that is commonly offered.

Social or cultural evolution

It is sometimes thought that one should only speak of evolution if
the analogy with biological evolution is very close. It is true that
replicators don’t only arise in a biological context.
Rules-of-thumb, codes-of-conduct, fashions, lifestyles, creeds, and
scientific ideas are all replicators of a kind. Richard Dawkins refers
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to such cultural replicators as memes. They spread from one
human mind to another through imitation or education.

I used to be enthusiastic about memes, but now that we
understand that the replicator dynamics emerge not just from toy
models of biological reproduction, but also from toy models of
imitation and stimulus-response learning, it seems unnecessary to
shackle ourselves to the meme paradigm. Whenever adaptive
dynamics take us to the Nash equilibrium of a game, I am ready to
speak of cultural evolution.

The chief difference in applying evolutionary ideas between the
biological and the social sciences would seem to be that biologists
are usually very well informed about the sources of interesting
variation, whereas social scientists can only guess. For example, an
evolutionary model in economics must take account of the fact
that mutations in the form of new money-making schemes are
appearing all the time, but if economists could predict which of
these were going to be successful, they would all be rich!
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Chapter 9

Bargaining and coalitions

Half of Von Neumann and Morgenstern’s Theory of Games and
Economic Behavior is devoted to two-person zero-sum games.
This part of the book is the birthplace of the noncooperative
theory of games that we have studied up to now. In this theory, the
strategic opportunities of the players are explored in detail, and
predictions of their behaviour are made using the idea of a Nash
equilibrium. The other half of Von Neumann and Morgenstern’s
book is about cooperative game theory.

This use of words is an endless source of confusion, because critics
mistakenly assume that noncooperative game theory is exclusively
about conflict and cooperative game theory is exclusively about
cooperation. They are right to the extent that cooperative game
theory is largely about how rational people will cooperate. What
coalitions will form? Who will get how much of the gravy? But
they go astray when they treat cooperative and noncooperative
game theory as antithetic perspectives in which Dr Jekyll and Mr
Hyde are set up as rival paradigms on the human condition. After
all, the folk theorem is part of noncooperative game theory, but its
chief interest lies in showing how cooperation can be sustained as
equilibrium behaviour in repeated games.

Cooperative game theory differs from noncooperative game theory
only in abandoning any pretension at explaining why cooperation
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survives in our species. It postulates instead that the players have
access to an unmodelled black box whose contents somehow
resolve all the problems of commitment and trust that have
worried us periodically throughout this book. Among other things,
the black box must contain an explanation of how preplay
negotiations on how a game should be played can result in an
agreement that the players treat as unconditionally binding.

In economic applications, one can sometimes argue that the black
box contains all the apparatus of the legal system. The players
then honour their contracts for fear of being sued if they don’t. In
social applications, the black box may contain the reasons why the
players care about the effect that behaving dishonestly in the
present may have on their reputation for trustworthy behaviour in
the future. One can even argue that the black box contains the
results of our childhood conditioning, or an inborn aversion to
immoral behaviour.

The utopian fallacy is to imagine that the black box of cooperative
game theory contains nothing more than the fond hope that
conflict would disappear if only people would behave rationally.
Much conflict in real life is admittedly stupid, but we won’t make
people less stupid by teaching them that their hearts are more
rational than their heads.

The way to respond to the utopian fallacy is to open the
cooperative black box and take a long hard look at what lies inside.
Why does it make sense for players to trust each other in some
situations and not in others? Why don’t they pursue their own
interests rather than those of the group to which they belong?

When seeking to answer such questions, we have no choice but to
use the methods of noncooperative game theory. Noncooperative
game theory is therefore the study of games in which any
cooperation that may emerge is fully explained by the choice of
strategies the players make. But this can be very hard. Cooperative
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game theory bypasses all the difficult why questions in the hope of
finding simple characterizations of what agreement rational
players will eventually reach.

Nash program

The Nash program invites us to open the cooperative black box to
see whether the mechanism inside really does work in the way a
particular cooperative solution concept assumes.

Nash observed that any negotiation is itself a species of game, in
which the moves are everything the players may say or do while
bargaining. If we model any bargaining that precedes the play of a
game in this way, the result is an enlarged game. A strategy for this
negotiation game first tells a player how to conduct the preplay
negotiations, and then how to play the original game depending
on the outcome of the negotiations.

Negotiation games must be studied without presupposing preplay
bargaining, all preplay activity having already been built into their
rules. Analysing them is therefore a task for noncooperative game
theory. So we look for their Nash equilibria, hoping that the
equilibrium selection problem won’t prove too difficult.

When negotiation games can be solved successfully, we have a way
of checking up on cooperative game theory. If a cooperative
solution concept predicts the result of a rational agreement on
how to play some game, then a noncooperative analysis of the
enlarged negotiation game should yield the same answer.

Nash therefore regarded cooperative and noncooperative game
theory as complementary ways of approaching the same problem.
Cooperative game theory offers easily applied predictions of
rational agreements. Noncooperative game theory provides a way
of testing these predictions.
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Nash bargaining solution

A Beverly Hills mansion is worth $4m to its owner and $5m to a
potential buyer. By getting together and agreeing a sale, the buyer
and the seller can create a surplus of $1m. How this surplus is
divided between them is decided by bargaining. A simple model
that captures the essence of this archetypal bargaining problem is
traditionally known as Divide-the-Dollar.

The story that goes with the model envisages a philanthropist who
offers Alice and Bob the opportunity to share a dollar – provided
they can agree on how to divide it between them. If they can’t
come to an agreement, the philanthropist takes his dollar back
again. In this story, the dollar represents the surplus over which
two economic agents bargain. The philanthropist’s provision that
the dollar is available only if Alice and Bob can reach an
agreement represents the fact that there will be no surplus unless
the agents get together to create it.

When Nash considered the problem, orthodox economists held
that rationality is irrelevant to the problem, because the outcome
depends on how skilfully Alice and Bob negotiate. Bargaining was
therefore thought to be a problem for psychology rather than
economics. Even Von Neumann and Morgenstern endorsed this
view in their Theory of Games and Economic Behavior.When
speaking about bargaining 30 years later, I found that hecklers
were still sold on the idea that ‘bargaining isn’t part of economics’.
In retrospect, it seems amazing that such a bizarre notion should
have won such widespread acceptance, but the past is truly a
foreign country.

Nash’s argument

John Nash began to think about bargaining when he took a single
economics course on international trade as part of his
undergraduate degree. The thoughts to which he was led
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33. The Nash bargaining solution

eventually overturned the orthodox view that the bargaining
problem is indeterminate.

Recall that we can identify utility with money in the case of a
risk-neutral player. If Alice and Bob are risk neutral in
Divide-the-Dollar, one therefore doesn’t need to be a genius to
predict that they will split the dollar fifty-fifty if they both have
access to the same strategic opportunities in whatever negotiation
game they play. But suppose they have different attitudes to risk?
If Bob is more risk averse than Alice, he will fear a disagreement
more than her. So he will end up with less of the dollar – but how
much less?

Nash’s way of figuring out the answer is illustrated in Figure 33.
The first step is to identify each available deal with the pair of
utilities that Alice and Bob would get if the deal were
implemented. The disagreement point that results if no deal is
reached at all is called the status quo. The shape of the set of all
possible agreements is convex when Alice and Bob are both risk
averse.

Nash assumed that a rational deal will be somewhere on the
frontier of the set of all possible agreements – otherwise the

144



B
arg

ain
in
g
an

d
co

alitio
n
s

players would be able to find a more efficient agreement that both
prefer. (Economists mysteriously call this observation the Coase
theorem, although it is neither a theorem nor original to the Nobel
Prize-winner Ronald Coase.) Nash then drew a tangent to the
frontier of the agreement set at the point representing the rational
deal.

The next step is to relocate the zeros on Alice and Bob’s utility
scales at the status quo. The units on their utility scales are then
adjusted to make the slope of the tangent at the rational deal equal
to 45◦. The diagram on the right of Figure 33 shows the new
situation. If the agreement set were the shaded triangle in this
diagram, then the rational deal would have to be the midpoint of
the hypotenuse (for the same reason that we agreed that the
rational deal would be fifty-fifty in Divide-the-Dollar when Alice
and Bob are risk neutral).

The final step is to argue that the rational deal must remain the
same when we throw away all the points in the shaded triangle on
the right of Figure 33 that aren’t in the deeply shaded agreement
set. Nash called these ‘irrelevant alternatives’ because Alice and
Bob didn’t choose any of them when they were available, and so
they have no reason to change their agreement when they cease to
be available.

To find the Nash bargaining solution in the diagram on the left of
Figure 33, we therefore need only locate the tangent that touches
the frontier of the agreement set at its midpoint

Who should do howmuch housework?

Newspapers like to stoke the gender wars when short of copy.
Here is a typical quote: ‘Men pay lip service to equal rights in the
home while letting women do three quarters of the household
chores.’ Other things being equal, the fact that wives do more
housework than husbands would indeed show that the balance of
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power within marriages is biased in favour of men, but are other
things equal?

Alice and Bob are getting married. They have no interest in
enjoying any of the benefits of marriage other than sharing the
housework. In the modern style, they agree on a binding marriage
contract that specifies how many hours a week of housework each
will contribute. What deal does the Nash bargaining solution
predict that they will reach?

In a toy version of the problem, Alice thinks a household should
devote two hours a day to housework; Bob thinks one hour a day is
adequate. Each player derives a benefit of 100 utils a week if at
least the number of hours they think appropriate is worked;
otherwise they see no benefit at all in any housework being
done.

Neither Alice nor Bob likes doing housework. Alice loses 5 utils a
week for each hour of housework that she does. Bob loses 10 utils
per hour, because he dislikes doing housework more than Alice. In
the status quo situation before the marriage, Alice therefore does
14 hours of housework a week from which she derives a utility of
30 utils; Bob does 7 hours of housework from which he also
derives a utility of 30 utils.

The Coase theorem says that the bargaining outcome will be
efficient, which means that Alice will get her way over the number
of hours that the new household will spend on housework. To find
the Nash bargaining solution, we need to find the extreme
outcomes that just make the marriage worthwhile for both
partners. One extreme arises when Alice does all the housework;
she will then get 30 utils and Bob will get 100 utils. The other
extreme arises when it is Bob who gets only 30 utils. He will then
do one hour of housework a day. Alice must do the other hour of
housework to make up the two hours a day she thinks necessary.
Her utility will then be 65 utils.
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Because the model has been fixed to make Alice and Bob risk
neutral, the Nash bargaining solution is found by averaging the
two extremes. So Alice will end up with 47.5 utils and Bob with 65
utils a week. To make this happen, Alice will have to work 10 1

2

hours a week and Bob only 3 1
2 hours a week.

The Nash bargaining solution therefore says that if Alice and Bob
bargain on an equal basis, then Alice will get her way on the
number of hours worked a week, but she will have to do
three-quarters of the work. If it is indeed true that wives do three
times as much housework as single women, then our toy model
shows that it doesn’t necessarily follow that the balance of power
within marriages is biased in favour of men. Who would do how
much housework if all the factors left out of the toy model were
taken into account? Even if I knew, I wouldn’t say!

Rubinstein’s bargainingmodel

In accordance with the Nash program, Nash defended his
bargaining solution with a noncooperative bargaining model in
which Alice and Bob each simultaneously commit themselves to
take-it-or-leave-it demands. However, Schelling was later
successful in casting doubt on the realism of attributing
commitment power to the players in negotiation games.

For example, if Bob were able beat Alice to the draw when making
an irrevocable commitment in Divide-the-Dollar, then he could
scoop the pot by demanding 99 cents, leaving Alice with a choice
between one penny or nothing. But how does Bob convince Alice
that he is truly committed – that nothing she might do can make
him revise his demand? Who believes someone who claims he is
now making his ‘last and final offer’? Even prices posted on
expensive items in fancy stores are seldom final. The seller will try
to make you feel like a cheapskate for challenging the price, but
folk wisdom is right for once. Everything is negotiable. Never take
no for an answer.
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It is genuinely hard to establish commitments. People sometimes
make a career of building up a reputation for being stubborn or
stupid for this purpose. Trade unionists occasionally succeed in
committing themselves by voting for intransigent leaders. But
outside such special circumstances, the vocabulary of
commitment is usually just so much cheap talk. But if all threats
must be credible, we have seen that we need to look at
subgame-perfect equilibria.

So what happens when anything a player says has to be credible
before the other player will believe it? This question led Ariel
Rubinstein to make the most important of all contributions to the
Nash program. In the most natural noncooperative model of
bargaining, Alice and Bob alternate in making offers to each other
until they reach agreement. If they are assumed to prefer making
any particular deal now rather than later, then Rubinstein showed
that the alternating-offers model has a unique subgame-perfect
equilibrium.

My own contribution was to show that the unique
subgame-perfect equilibrium outcome approximates an
asymmetric version of the Nash bargaining solution when the time
interval between successive offers becomes sufficiently small. In
the symmetric version of the Nash bargaining solution, the ratio
NB/AN in Figure 33 is equal to one. In the asymmetric
version NB/AN equals the ratio of the rates at which Alice and
Bob discount time.

If we make Alice more patient than Bob, her discount rate will
decrease and so the asymmetric version of the Nash bargaining
solution predicts that she will get more of the surplus available for
division.

Whatmatters in bargaining?

When I first met Ariel Rubinstein, he told me that he had been
working on the bargaining problem without any success. Since
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his theorem proved to be pivotal in destroying the orthodoxy
that the bargaining problem is indeterminate, this was an
unduly humble judgement. But his reason for judging himself so
harshly still holds good. All the work on bargaining that has been
summarized up to now assumes that information is complete.
But how often do real bargainers know each other’s
preferences?

When Alice tries to sell Bob a house, she would like to know the
most that he would really be willing to pay – but he won’t tell her.
Nor will she tell him the lowest price she will take. Such
informational asymmetries matter enormously. In particular, the
Coase theorem fails. Roger Myerson has shown that, if it is
common knowledge that Alice and Bob’s valuations are
independent and equally likely to be anything between $4m and
$5m, then the result of optimal bargaining is very inefficient
indeed. Even when the bargaining process is chosen to maximize
the expected surplus that rational bargainers can achieve, the
house is sold only when it is worth $250,000 more to Bob than
to Alice!

Information trumps all other considerations, but nobody knows
how to extract a unique prediction from Rubinstein’s bargaining
model when information is incomplete. The following principles
therefore have solid foundations only when the bargainers are
unable to conceal any secrets from each other.

Commitment

It is in Alice’s interest to convince Bob that she is unable to accept
less than her current demand, but she should view any attempt by
him to claim to have made a similar commitment with severe
scepticism. Sometimes your opponent will even turn out to be a
pushover. For example, when I once asked a car-hire clerk what
discounts were offered on the price she had just quoted, she
replied: 20%.
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Risk

The players’ attitudes to taking risks determines the shape of the
agreement set. The more risk averse you are, the less you get. Used
car dealers therefore affect light-hearted unconcern at the
prospect of losing a sale. But as the Bible tells, although they say it
is naught, when they goeth their way, they boasteth.

Time

The relative patience of the players determines how much
asymmetry must be built into the Nash bargaining solution. The
more impatient you are, the less you will get. In a recent court case
in which I was involved, the telecom regulator had ruled that the
leading fixed-line company must do a deal with a new entrant on
the price it would charge to connect the entrant’s customers with
its own customers. But in the absence of a ruling on when the deal
must be in place, the fixed-line company could afford to be
infinitely patient and thereby expropriate all the gains from trade.

Playing fair?

A best-selling book on negotiation dismisses any use of strategy as
a dirty trick. One should supposedly just insist on what is fair. It is
perhaps for this reason that a study of collective wage bargaining
in Sweden came up with 24 different definitions of what counts as
fair!

A reputation for religious or moral obstinacy can certainly
sometimes be strategically useful when bargaining. For example,
Daniel Defoe’s Compleat English Tradesman explains that it was
contrary to the religious principles of the Quakers of his time to
‘lie’ by asking for a deal better than they were willing to take. They
were therefore successful bargainers, because their first offer was
known to be their final offer. But what if the opposition attempts
the same commitment tactic? War is the usual consequence when
two nations put rationality aside in this kind of way.
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None of this is meant to imply that fairness is somehow irrational.
On the contrary, it seems to me to be the most important of the
conventions that humans use to resolve equilibrium selection
problems in everyday coordination games. But rather than
regarding fairness as a substitute for compromises reached by
rational bargaining, John Rawls’s Theory of Justicemakes rational
bargaining the foundation stone of his definition of a fair outcome.
Rawls identifies a fair deal with the agreement that Alice and Bob
would reach if they were to bargain behind a ‘veil of ignorance’
that concealed their identity during the bargaining. Neither Alice
nor Bob would then wish to disadvantage anyone, because they
might themselves turn out to be the disadvantaged party.

I have devoted a substantial chunk of my life using game theory to
examine the implications of Rawls’s definition. Why does it strike
us as reasonable? Does it lead to a utilitarian outcome as claimed
by Harsanyi, or an egalitarian outcome as claimed by Rawls?
However, life is too short to explain why I think Rawls defended a
sound intuition with a wrong argument.

Forming coalitions

How can we apply what we have learned about how two rational
people bargain to the bargaining that takes place when coalitions
form? Von Neumann and Morgenstern proposed the simplest toy
model in which coalitions matter.

Alice, Bob, and Carol are to play Divide-the-Dollar. Who gets how
much is determined by majority voting. Any coalition of two
players can therefore dispose of the dollar as they choose. But
which coalition will form? Who will be the odd man out? How will
the dollar be divided?

Outside options

Alice’s outside option when bargaining with Bob is the most she
can get elsewhere if their negotiations break down altogether.
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Labour economists continue to make the error of identifying the
status quo payoffs with the players’ outside options when using the
Nash bargaining solution to predict the outcome of wage
negotiations. For example, if Bob will become unemployed if he
fails to come to an agreement with Alice, then his status quo
payoff is taken to be the level of social benefit.

To see why it is usually a mistake to use the Nash bargaining
solution in this way, it is necessary to modify the Rubinstein
bargaining model so that Alice and Bob always have the
opportunity to take up their outside option after refusing an offer.
It then becomes obvious that the outside options are relevant to
the bargaining outcome only to the extent that we should discard
all payoff pairs from the agreement set that assign somebody less
than their outside option. The status quo needs to be identified
with the payoffs the players receive while negotiating. For
example, if Alice and Bob are seeking to negotiate the end of a
strike, then their status quo payoffs are their respective incomes
during the strike.

In order for it to be right to identify the status quo payoffs with the
players’ outside options, any breakdown in the negotiations needs
be forced rather than voluntary. To model such a forced
breakdown in Rubinstein’s model, one can introduce a chance
move that ends the negotiations with some small probability after
each refusal. This would correspond to the case in which any delay
in reaching an agreement might result in the surplus over which
Alice and Bob are bargaining being stolen by a third party.

Odd-Man-Out

Our three-player version of Divide-the-Dollar can be regarded as
three two-player bargaining problems to which we can apply
Nash’s cooperative bargaining theory. When two players bargain
about how they will split the dollar should they agree to form a
coalition on how to vote, their outside options are the deals that
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each would reach if they were to bargain with the odd-man-out
instead.

It follows that Alice must expect the same payoff if she succeeds in
forming a coalition with Bob as when she succeeds in forming a
coalition with Carol – otherwise one of the potential agreements
would require her to accept less than her outside option in that
situation. Together with the Coase theorem, this fact ties down the
three possible deals. In the case when the players are all risk
neutral, we are led to the unsurprising conclusion that the
coalition which forms will split the dollar fifty-fifty, leaving the
odd-man-out with nothing.

The symmetry of the problem makes it impossible to say which of
the three possible coalitions will form. However, the following
noncooperative model breaks the symmetry by requiring that
Alice, Bob, and Carol rotate in making payoff demands. When it is
your turn to move, you may either accept any demand that has
been made previously or else make a new demand of your own.
The unique subgame-perfect equilibrium predicts that the very
first opportunity to form a coalition will be seized by Alice and
Bob. In order that their shares of the dollar approximate our
cooperative prediction, the time interval between successive
demands needs to be very small.

Core

What can be said about how coalitions form in more general
situations? One proposal is that we should reject a payoff profile as
a possible solution outcome if some coalition can object to it on
the grounds that it is able to enforce an alternative payoff profile
that all its members prefer. The set of all payoff profiles to which
no such objection can be found is called the core of a cooperative
game.

Economists like the idea because the core of a large enough
market game approximates what will happen if buyers and sellers
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trade at whatever prices equate supply and demand. However,
applying the idea to Odd-Man-Out in the case when all the players
are risk neutral isn’t very encouraging.

We have seen that one possible solution outcome in Odd-Man-Out
is for Alice and Bob to form a coalition on the understanding that
they will vote to split the dollar so that each gets 50 cents. But this
outcome can’t be in the core, because Bob and Carol can object
that they are able to enforce an outcome that they both prefer by
voting to split the dollar so that Bob gets 51 cents and Carol gets
49 cents. Since similar reasoning can be used to exclude any payoff
profile whatever, the core of Odd-Man-Out is empty.

Condorcet paradox

The Marquis de Condorcet was an idealistic French revolutionary
who discovered a similar problem when exploring possible voting
systems. If Alice and Bob form a coalition that disadvantages
Carol, she will offer whoever will listen a little more than they are
currently getting. If Bob takes up Carol’s offer and abandons Alice,
then Alice will become the disadvantaged party, with an incentive
to offer Carol a little more than she is currently getting. If Carol
agrees, Bob will then approach Alice. And so on.

The results in real life can be devastating. For example, the border
between England and Wales where I live was a battlefield for
centuries. Powerful lords on the English side supposedly guarded
the border or marches against raids by the Welsh tribes, but
warfare was actually continuous as the Welsh, the King of
England, and the local Marcher Lord shifted alliances to combine
against whichever of the three was currently most powerful.

Condorcet’s life didn’t work out any better than the victims of the
unstable social systems whose mechanics he succeeded in
identifying. He had hoped to create a utopia by mathematical
reasoning, but was sentenced to the guillotine instead.
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Stable sets

Von Neumann and Morgenstern understood that Bob would be
unwise to listen to Carol in Odd-Man-Out when she explains that
he can get 51 cents by joining a coalition with her rather the 50
cents that Alice has promised him. If it is a good idea to dump
Alice when he is approached by Carol, then it will be a good idea
for Carol to dump him when she is approached by Alice.

To capture this idea, Von Neumann and Morgenstern invented a
notion that is nowadays called a stable set. They argued that
objections which aren’t themselves possible solution outcomes
should be ignored. Anything outside a stable set is still excluded
because an objection from within the stable set can be found, but
something inside a stable set need only be immune from
objections within the stable set.

Their chief example was Odd-Man-Out when the players are all
risk neutral. One stable set consists of the three possible outcomes
in which the dollar is divided equally between two of the players.
However, there are lots of other stable sets. For example, the set of
all of outcomes in which Carol gets 25 cents and the rest of the
dollar is split in all possible ways between Alice and Bob is
stable.

It isn’t easy to make sense of these new stable sets. Other game
theorists disagree, but I think their appearance simply shows that
the idea of a stable set isn’t precise enough. So there are
sometimes too many stable sets – but this is the least of our
troubles. William Lucas found a cooperative game with many
players that has no stable sets at all, and so there are also
sometimes too few stable sets.

Shapley value

I was once summoned urgently to London to explain what the
French government was talking about when it suggested that the
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costs of a proposed tunnel under the English Channel be allocated
to countries in the European Union using the Shapley value. The
latter is the brainchild of Lloyd Shapley, who was another of the
brilliant group of graduate students who studied mathematics
alongside John Nash at Princeton.

Shapley followed Nash’s example by proposing a set of
assumptions that define a unique prediction for the outcome of a
cooperative game. However, unlike Nash, his assumptions apply
not just to bargaining games with only two players, but to any
cooperative game with ‘transferable utility’. The leading case of
interest is when the players are all risk neutral and the payoffs are
measured in dollars. It can then be argued that everything that
matters about a coalition is what I shall call the value of the
coalition – the largest number of dollars that it can guarantee is
available to be shared out among its members. These payoffs
include any ‘side payments’ necessary to buy the loyalty of any
member of the coalition who might think the grass looks greener
elsewhere.

For example, in Odd-Man-Out, the value of each coalition with
two players is one dollar. The value of the grand coalition of all
three players is also one dollar. The value of a coalition with only
one player is zero. The empty coalition with no players also has
value zero.

The easiest way to find the Shapley value makes it explicit that it is
intended as an average over all the possible ways that coalitions
might form. Start with the empty coalition and add players until
you get to the grand coalition. When Alice is added to a coalition,
write down her marginal contribution to the coalition – the
amount by which her inclusion increases the value of the coalition.
The payoff assigned to Alice by the Shapley value is then the
average of all her marginal contributions taken over all the
possible ways in which the grand coalition can be assembled one
player at a time.
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Odd-Man-Out has three players, and so there are six ways of
ordering the players: ABC, ACB, BAC, BCA, CAB, CBA. Alice’s
marginal contributions are respectively: 0, 0, 1, 0, 1, 0. So the
Shapley value assigns Alice a payoff of 1/3 of a dollar, which is
what we argued she would get on average in the previous section
on coalitions.

How useful is the Shapley value? I think there is no doubt of its
relevance to cost-sharing exercises of the type proposed by the
French government, but it doesn’t fare too well when tested by the
Nash program. Like much else in game theory, there remains a
great deal about coalition formation that we do not yet
understand.
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Chapter 10

Puzzles and paradoxes

Feedback phenomena and human intuition are uncomfortable
bedfellows. When people dislike where an equilibrium argument
takes them, it is therefore unsurprising that they invent simpler
arguments that lead to more palatable conclusions. However, the
first principle of rational thought is never to allow your
preferences to influence your beliefs.

Fallacies of the Prisoner’s Dilemma

The fact that both players would be better off if they didn’t play
their equilibrium strategies in the Prisoner’s Dilemma is said to be
a paradox of rationality that requires resolution.

Categorical imperative

In colloquial language, Immanuel Kant’s categorical imperative
says that it is rational to do what you wish everybody would do. If
this were true, it would be rational to cooperate in the Prisoner’s
Dilemma. But wishful thinking is never rational. It is a constant
source of amazement to me that Kant is never held to account for
proposing a rationality principle without giving any reasons why
we should take it seriously.
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Fallacy of the twins

Two rational people facing the same problem will necessarily
choose the same action. So Alice and Bob will either both play
hawk or both play dove in the Prisoner’s Dilemma. Since Alice
prefers the outcome (dove,dove) to (hawk,hawk), she should
therefore choose dove.

The fallacy is attractive because it would be correct if Alice and
Bob were genetically identical twins, and we were talking about
what genetically determined behaviour best promotes biological
fitness (see Kin selection in Chapter 8). But the relevant game
wouldn’t then be the Prisoner’s Dilemma; it would be a game with
only one player.

As is commonplace when looking at fallacies of the Prisoner’s
Dilemma, we are offered a correct analysis of the wrong game.
The Prisoner’s Dilemma is a two-player game in which Alice
and Bob choose their strategies independently. The twins fallacy
wrongly assumes that Bob will make the same choice as Alice
whatever strategy she chooses. This can’t be right, because
Bob is supposedly rational and one of his two choices is
irrational.

One can modify the assumptions of the fallacy so that Alice and
Bob’s strategies coincide only with some sufficiently high
probability. The story told to justify such a correlation in their
behaviour often kicks up enough dust to obscure the fact that any
correlation at all implies that Alice and Bob aren’t choosing
independently. But if they don’t choose independently, they aren’t
playing the Prisoner’s Dilemma. Even if Alice and Bob’s
information were correlated, as hypothesized in Aumann’s notion
of a correlated equilibrium, they still wouldn’t play hawk, because
hawk is strongly dominated whatever the players may learn about
other matters.
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Myth of the wasted vote

A version of the twins fallacy is routinely trotted out at election
time, when pundits argue that ‘every vote counts’ (see Mixed Nash
equilibria, Chapter 2). If a wasted vote is one that doesn’t affect
the outcome of the election, then the only time that your vote can
count is when only one vote separates the winner and the
runner-up. If they are separated by two or more votes, then a
change in your vote would make no difference at all to who is
elected. However, an election for a seat in a national assembly is
almost never settled by a margin of only one vote.

Here is a hypothetical example of an election even closer
than the actual race between Bush and Gore in the United States
in 2000. A reliable opinion poll says that the voters in a pivotal
state who have made up their minds are split 51% to 49% in
favour of Bush. The probability that a floating voter will go for
Bush is just enough to ensure that he will beat Gore by 500 votes
on average. Things look so close that Alice decides to vote. What
are the chances that her vote will count – that the result would
have been different if she had stayed home and watched the
television?

With one million voters of whom 5% are undecided, Alice’s vote
would count only once in every 8,000 years, even if the same
freakish circumstances were repeated every four years. But they
won’t be. The chances that the votes cast by floaters will almost
balance those cast by the decided voters are infinitesimal. If the
floaters in our example voted for Bush with the same frequency as
the rest of the population, Alice’s vote would count only once in
every 20 billion billion years. No wonder no state has ever been
decided by a single vote in a presidential election!

Naive folk imagine that to accept this argument is to precipitate
the downfall of democracy. We are therefore told that you are
wrong to count only the effect of your vote alone – you should
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instead count the total number of votes cast by all those people
who think and feel as you think and feel, and hence will vote as
you vote. If you have 10,000 such soul mates or twins, your vote
wouldn’t then be wasted, because the probability that an election
will be decided by a margin of 10,000 votes or less is often very
high. This argument is faulty for the same reason that the twins
fallacy fails in the Prisoner’s Dilemma. There may be large
numbers of people who think and feel like you, but their decisions
on whether to go out and vote won’t change if you stay home and
watch the television.

Critics sometimes accuse game theorists of a lack of public
spirit in exposing this fallacy, but they are wrong to think that
democracy would fall apart if people were encouraged to think
about the realities of the election process. Cheering at a football
game is a useful analogy. Few cheers would be raised if what
people were trying to do by cheering was to increase the general
noise level in the stadium. No single voice can make an
appreciable difference to how much noise is being made when a
crowd of people is cheering. But nobody cheers at a football game
because they want to increase the general noise level. They shout
words of wisdom and advice at their team even when they are at
home in front of a television set.

The same goes for voting. You are kidding yourself if you vote
because your vote has a significant chance of being pivotal. But it
makes perfectly good sense to vote for the same reason that
football fans yell advice at their teams. And, just as it is more
satisfying to shout good advice rather than bad, so many game
theorists think that you get most out of participating in an election
by voting as though you were going to be the pivotal voter, even
though you know the probability of one vote making a difference is
too small to matter. A Kantian would assume that everyone is
similarly strategic, but I prefer to use opinion polls when guessing
the most likely way a tie might arise.
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For example, Ralph Nader was the green candidate in the
presidential election when Bush just beat Gore. I am hot on green
issues, but I wouldn’t have voted for Nader, because if there had
been a tie, it would almost certainly have been between Bush and
Gore. In Europe, such strategic voting will sometimes result in
your voting for a minor party. The same pundits who tell you that
every vote counts will also tell you that such a strategic vote is a
wasted vote. But they can’t be allowed to have it both ways!

Transparent disposition fallacy

This fallacy asks us to believe two doubtful propositions. The
first is that rational people have the willpower to commit
themselves in advance to playing games in a particular way. The
second is that other people can read our body language well
enough to know when we are telling the truth. If we truthfully
claim that we have made an irrevocable commitment, we will
therefore be believed.

If these propositions were correct, our world would certainly be
very different! Charles Darwin’s Expression of the Emotions
would be wrong in denying that our involuntary facial muscles
make it impossible to conceal our emotional state, and so actors
would be out of a job. Politicians would be incorruptible. Poker
would be impossible to play. Rationality would be a defence
against drug addiction. However, the logic of game theory would
still apply.

As an example, consider two possible mental dispositions called
CLINT and JOHN. The former is a retaliating strategy named after
the character played by Clint Eastwood in the spaghetti westerns
(see Evolution of Cooperation, Chapter 8). The latter
commemorates a hilarious movie I once saw in which John Wayne
played the part of Genghis Khan. To choose the disposition JOHN

is to advertise that you have committed yourself to play hawk in
the Prisoner’s Dilemma no matter what. To choose the disposition
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34. Transparent disposition fallacy

CLINT is to advertise that you are committed to play dove in the
Prisoner’s Dilemma if and only if your opponent is advertising the
same commitment. Otherwise you play hawk.

If Alice and Bob are allowed to commit themselves transparently
to one of these two dispositions, they won’t be playing the
Prisoner’s Dilemma any more; they will be playing the Film Star
Game of Figure 34 in which the players’ strategies are CLINT and
JOHN. If both players choose CLINT in the Film Star Game, they
are then committed to playing dove in the Prisoner’s Dilemma;
otherwise they are committed to playing hawk.

As the circled payoffs show, CLINT is a (weakly) dominant strategy
in the Film Star Game. So if Alice and Bob choose CLINT, they will
be playing a Nash equilibrium that results in their cooperating in
the Prisoner’s Dilemma. Advocates of the transparent disposition
fallacy think that this shows that cooperation is rational in the
Prisoner’s Dilemma. It would be nice if they were right that
real-life games are really all Film Star Games of some kind –
especially if one could choose to be Adam Smith or Charles
Darwin rather than John Wayne or Clint Eastwood. But even then
it wouldn’t follow that rationality requires cooperating in the
Prisoner’s Dilemma. The argument shows only that it is rational to
play CLINT in the Film Star Game.
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Newcomb’s paradox

Two boxes possibly have money inside. Alice is free to take either
the first box or both boxes. If she cares only for money, what
should she do? This seems an easy problem. If dove represents
taking only the first box and hawk represents taking both boxes,
then Alice should choose hawk because she then gets at least as
much money as with dove.

However, there is a catch. It is certain that the second box contains
one dollar. The first box contains either two dollars or nothing.
The decision about whether there should be money in the first box
is made by Bob, who knows Alice so well that he is always able to
make a perfect prediction of what she will do. Like Alice, he has
two choices, dove and hawk. His dovelike choice is to put two
dollars in the first box. His hawkish choice is to put nothing in the
first box. His motivation is to catch Alice out. He therefore plays
dove if he predicts that Alice will choose dove. He plays hawk if he
predicts that Alice will choose hawk.

Choosing hawk doesn’t look so good for Alice now. If she chooses
hawk, Bob predicts her choice and puts nothing in the first box, so
that Alice gets only the single dollar in the second box. But if Alice
chooses dove, Bob will predict her choice and put two dollars in
the first box for her to pick up.

The Harvard philosopher Robert Nozick created a craze in his
profession (aptly described as Newcombmania) by claiming that
Newcomb’s paradox shows you can sometimes maximize your
payoff by playing a strongly dominated strategy. He could equally
well have argued that it shows 2 + 2 = 5, since anything can be
deduced from a contradiction. The contradiction in Newcomb’s
paradox consists in assuming the existence of a game in which:

1. Alice moves after Bob.

2. Bob knows Alice’s choice.

3. Alice has more than one choice.
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35. Two attempts to satisfy Newcomb’s requirements. The information
set in the right-hand game indicates that Alice doesn’t know Bob’s
prediction. The payoff tables underneath each game tree are the
relevant strategic forms

Figure 35 shows two attempts to create such a game without being
specific about Bob’s payoffs; the game on the left fails item 1 on the
list, and that on the right fails item 2. We can satisfy both item 1
and item 2 by offering Alice only one choice in the right-hand
game, but then we fall foul of item 3.

When arguing that Alice must play dove to maximize her payoff,
Nozick assumes that Bob will play dh in the left-hand game. That
is to say, Bob will predict d when Alice plays d and h when she
plays h . However, Alice’s strategy d isn’t dominated in the
left-hand game. To argue that Alice’s strategy d is dominated, one
has to appeal to the right-hand game. But it isn’t paradoxical that
Alice might play differently in different games.

One can muddy the waters by giving up the requirement that Bob
can predict Alice’s behaviour perfectly.We can then create a game
in which the three requirements of Newcomb’s paradox are
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satisfied by introducing chance moves into the right-hand game
that remove Alice’s opportunity to choose differently from Bob
some of the time. But no amount of juggling with the parameters
will make it optimal to play a strongly dominated strategy!

Surprise test paradox

The British telecom auction that raised $35 billion has been
mentioned several times. Everybody was surprised at this
enormous amount – except for the media experts, who finally got
the figure roughly right by predicting a bigger number whenever
the bidding in the auction falsified their previous prediction.
Everybody can see the fraud perpetrated by the media experts on
the public in this story, but the fraud isn’t so easily detected when
it appears in one of the many versions of the surprise test
paradox, through which most people first learn of backward
induction.

Alice is a teacher who tells her class that they are to be given a test
one day next week, but the day on which the test is given will come
as a surprise. Bob is a pupil who works backward through the days
of the coming school week. If Alice hasn’t set the test by the time
school is over on Thursday, Bob figures that she will then have no
choice but to set the test on Friday – this being the last day of the
school week. So if the test were given on Friday, Bob wouldn’t be
surprised. Bob therefore deduces that Alice can’t plan to give the
test on Friday. But this means that the test must be given on
Monday, Tuesday, Wednesday, or Thursday. Having reached this
conclusion, Bob now applies the backward induction argument
again to eliminate Thursday as a possible day for the test. Once
Thursday has been eliminated, he is then in a position to eliminate
Wednesday. Once he has eliminated all the days of the school week
by this method, he sighs with relief and makes no attempt to study
over the weekend. But then Alice takes him by surprise by setting
the test first thing on Monday morning!
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This isn’t really a paradox at all, because Bob shouldn’t have been
so quick to sigh with relief. If the backward induction argument is
correct, then Alice’s two statements are inconsistent, and so at
least one of them must be wrong. But why should Bob assume that
the wrong statement is that a test will be given, and not that the
test will come as a surprise? This observation is usually brushed
aside, because what people really want to hear about is whether
the backward induction argument is right. But what they should
be asking is whether backward induction has been applied to the
right game.

In the game that people imagine is being analysed, Eve chooses
one of five days on which to hold the test, and Bob predicts
which of the five days she will choose. If his prediction is wrong,
then he will be taken by surprise. The solution of this version of
Matching Pennies is that Alice and Bob both choose each day
with equal probability. Bob is then surprised four times out of
five.

This isn’t the conclusion we reached before, because the surprise
test paradox applies backward induction to a game in which Bob is
always allowed to predict that the test will be today, even though
he may have wrongly predicted that it was going to take place
yesterday. In this bizarre game, Bob’s optimal strategy is therefore
to predict Monday on Monday, Tuesday on Tuesday, Wednesday
on Wednesday, Thursday on Thursday, and Friday on Friday. No
wonder Bob is never surprised by having the test occur on a day he
didn’t predict!

The surprise test paradox has circulated ever since I can
remember. Occasionally it gets a new airing in newspapers and
magazines. It has even been the object of learned articles in
philosophical journals. The confusion persists because people fail
to ask the right questions. One of the major virtues of adopting a
systematic formalism in game theory is that asking the correct
questions becomes automatic. You then don’t need to be a genius
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like Von Neumann to stay on the right track. His formalism does
the thinking for you.

Common knowledge

Why do we attach so much importance to eye contact? I think the
reason is that something becomes common knowledge only if it is
implied by an event that couldn’t have occurred without everybody
knowing it. For example, if Alice and Bob observe each other
observing that Carol has a dirty face, then it becomes common
knowledge between Alice and Bob that Carol has a dirty face.
Similarly, when two people look each other in the eye, it becomes
common knowledge between them that they are aware of each
other as individuals.

Three old ladies

Alice, Beatrice, and Carol are three respectable ladies at a
midwestern county fair. Each has a dirty face, but nobody is
blushing, although a respectable lady who was conscious of
appearing in public with a dirty face would surely do so. It follows

36. Three midwestern ladies
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that none of the ladies knows that her own face is dirty, although
each can clearly see the dirty faces of the others.

Midwestern clergymen always tell the truth, and so the ladies pay
close attention when a local minister announces that one of the
ladies has a dirty face. After his announcement, one of the ladies
blushes. How come? Didn’t the minister simply tell the ladies
something they knew already?

To understand what the minister added to what the ladies already
knew, we need to look at the chain of reasoning that leads to the
conclusion that at least one of the ladies must blush. If neither
Beatrice nor Carol blushes, Alice would reason as follows:

Alice: Suppose that my face were clean. Then Beatrice

would reason as follows:

Beatrice: I see that Alice’s face is clean. Suppose that my face

were also clean. Then Carol would reason as

follows:

Carol: I see that Alice and Beatrice’s faces are clean. If my

face were clean, nobody’s face would be dirty. But

the minister’s announcement proves otherwise. So

my face is dirty, and I must blush.

Beatrice: Since Carol hasn’t blushed, my face is dirty. So I

must blush.

Alice: Since Beatrice hasn’t blushed, my face is dirty. So I

must blush.

So what did the minister add to what the ladies already knew?
For Alice’s reasoning to work, she needed to know that Beatrice
knows that Carol knows that Alice and Beatrice know that
someone has a dirty face. All these knowings became possible only
after the minister’s announcement makes it common knowledge
that someone has a dirty face. It is then not only true that Alice,
Beatrice, and Carol know that one of them has a dirty face;
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they all know that they all know that they all know that they
know it.

A coordination paradox

Is a magnificent beard necessary to make advances in interactive
epistemology? The only evidence I have to offer is that the bearded
Princeton philosopher David Lewis shares the credit for
recognizing the importance of common knowledge in game theory
with the equally hirsute Bob Aumann. But what are we to make of
Lewis’s claim that a convention can’t be operational unless it is
common knowledge that the players are planning to use it?

For something to become common knowledge, we need an
equivalent of the tactless clergyman in the story of the three
midwestern ladies. But no such clergyman is usually to be found.
Nearly all the conventions we use in daily life therefore fail Lewis’s
test. So how come they seem to work so well?

Computer scientists worried about the implications for distributed
systems illustrate the problem by telling a story about two
Byzantine generals trying to coordinate an attack on an enemy
army that lies in a valley between them, but I prefer a less
dramatic example.

Alice and Bob want to get together tomorrow in New York. Alice
emails the suggestion that they meet at Grand Central Station at
noon. Bob emails a confirmation. This exchange would be
adequate for most of us, but Lewis would object that the
agreement isn’t common knowledge because Bob doesn’t know
that Alice received his confirmation. She should therefore email to
confirm that she received his confirmation. Bob should then email
a confirmation of her confirmation, and so on. Since there is
always a small probability that an email message won’t be
received, their attempt to agree on a convention will never become
common knowledge.
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But why should a convention have to be common knowledge to be
operational? Ariel Rubinstein studied this question by analysing a
new Email Game in which Alice and Bob’s Meeting Game is
replaced by the Stag Hunt Game of Chapter 4. The default
convention is for Alice and Bob to play dove in the Stag Hunt
Game, but every so often the labels of both their strategies get
reversed, so that choosing dove will result in hawk actually being
played. Only Alice observes when this happens. She sends an
email message to Bob saying that they should play hawk on this
occasion rather than dove. He automatically sends a confirmation.
She automatically sends a confirmation of his confirmation,
and so on.

A strategy in the Email Game says whether dove or hawk should
be played depending on the number of messages a player has
received. We can then short-circuit the common knowledge
question by asking whether there is a Nash equilibrium of the
Email Game in which Alice and Bob always succeed in
coordinating on the equilibrium they both prefer in the
Stag Hunt Game. Rubinstein’s answer seems to confirm Lewis’s
intuition. The only Nash equilibrium in the Email Game in which
Alice and Bob play dove when no message is sent requires that
they always play dove no matter how many messages they may
receive.

However, the picture changes when we allow Alice and Bob to
choose whether or not to send or receive messages. The modified
Email Game then has many Nash equilibria, the most pleasant of
which requires that both players play hawk whenever Alice
proposes doing so and Bob says OK – as when friends agree to
meet in a coffee shop. But there are other Nash equilibria in which
the players settle on hawk only after a long exchange of
confirmations of confirmations. Hosts of polite dinner parties
suffer from such equilibria when their guests start moving with
glacial slowness towards the door at the end of the evening,
stopping every inch or so in order that the host and the guest can
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repeatedly assure each other that departing at this time is socially
acceptable to both sides.

The common-sense conclusion is that conventions don’t need to
be common knowledge to work. Most conventions are established
by the forces of cultural evolution. Sometimes evolutionary
stability considerations make it possible to eliminate some Nash
equilibria. In the modified Email Game, one might hope that such
considerations would eventually eliminate the equilibria that
generate ‘long goodbyes’ after dinner parties, but the prognosis
isn’t good. Ironically, only Rubinstein’s equilibrium, in which Alice
and Bob play dove no matter what happens, fails to pass an
appropriate evolutionary stability test.

Monty Hall problem

Alice is a contestant in an old quiz show run by Monty Hall. She
must choose from three boxes, only one of which contains a prize.
Monty knows which box contains the prize, but Alice doesn’t.
After she chooses Box 2,Monty opens one of the other boxes that
he knows to be empty. Alice then has the opportunity to change
her mind about her choice of box. What should she do?

People usually say it doesn’t matter. They reason that Alice’s
probability of winning when she chose Box 2 was 1/3 because
there was then an equal chance of the prize being in any of the
three boxes. After another box is shown to be empty, the
probability that Box 2 contains the prize goes up to 1/2, because
there is now an equal chance that the prize is in one of the two
unopened boxes. If Alice switches boxes, her probability of
winning will therefore still be 1/2. So why bother changing?

Marilyn Vos Savant apparently has the highest IQ ever recorded.
When she explained in Parademagazine that Alice should always
switch boxes, various self-appointed mathematical gurus laughed
her to scorn, but she was right.
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The probability that the prize is either in Box 1 or Box 3 is 2/3. If
she switches to whichever of these boxes isn’t opened, Alice will
therefore win with probability 2/3.

This argument is deceptively easy. Even top mathematicians
sometimes fail to see why Monty’s action conveys so much
information to Alice. After all, it wouldn’t have conveyed any
useful information at all if he had opened a box at random that
just happened to be empty – but he deliberately chose a box that
he knew to be empty.

However, you don’t need to have the highest IQ ever recorded to
get the answer right if you are willing to let Von Neumann do your
thinking for you. Figure 37 shows the game that Alice and Monty

37. TheMonty Hall Game. Only Alice’s payoffs are shown. The chance
move is shown as a square. Alice’s information sets show that she
doesn’t know which box contains the prize, but she does know which
boxMonty opens. Her switching choice is thickened. The figure shows
that whatever strategyMonty chooses, Alice wins with probability 2/3
if she switches
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are playing. It doesn’t matter what Monty’s payoffs are, but we
might as well assume that he wants Alice to lose. A chance move
first puts the prize in one of the boxes. Monty then decides
whether to open Box 1 or Box 3. (He only has a genuine choice
when the prize is actually in Box 2.) Alice then chooses whether to
stay with Box 2 or to switch to whichever of Box 1 or Box 3Monty
didn’t open.

There is now no need to think at all. If Alice always switches, the
figure makes it impossible not to recognize that she wins when the
prize is in Box 1 or Box 3 and loses when the prize is in Box 2. So
she wins with probability 2/3.
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